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Executive Summary 

This Second-Year Report captures research results of the 2nd year of a 3-year research 
project supported by a grant from the Delaware General Assembly. The first-year 
research effort outlined a literature review and conceptual understanding of automated 
M&V in relation to energy efficiency financing from a range of different perspectives 
(including client, energy service company (ESCO), and investor perspectives). In 
addition, the first-year report demonstrates a methodological approach capable of 
parsing out some of the expected benefits of incorporating automated M&V in energy 
efficiency finance. A preliminary test of the approach – using a small sample size and 
limited energy conservation measures (ECMs) – was conducted at the end of last year as 
well. Finally, the first-year research effort concluded with a range of recommended 
actions for the next installment of the investigation.  

This Second-Year Report draws from the findings of the first year – where extensive 
consideration and examination of the extant literature was included and initial model 
application was performed – in order to conduct a practical assessment of investor risk 
mitigation in energy efficiency retrofit projects using automated monitoring and 
verification (M&V) techniques. Particular emphasis is directed towards the modeling 
effort conducted so far and application of several of the recommendations of the first-
year final report. This report details the work conducted over the September 2017 – May 
2018 time period. Research results of the project so far indicate interesting risk mitigation 
opportunities using automated M&V techniques. The report closes with several 
recommendations for the 2018-2019 research project. 

The context of the modeling approach is assumed to be a proposed energy efficiency 
project using guaranteed energy savings agreements (GESAs). Within such an 
agreement, an ESCO guarantees a level of savings in order to underwrite the overall 
project. However, to incorporate possible performance variation due to behavioral, 
technological and other dynamics, the ESCO is typically only comfortable with a 
conservative guarantee. Literature review in the 2016-2017 final report and additional 
literature evaluated in this report supports this assertion. As such, it is feasible that 
additional technology components capable of assuring a higher level of performance 
could help accelerate the energy efficiency sector. As postulated in the 2016-2017 final 
report, automated M&V could fulfil such a role as advanced data gathering and analytics 
could potentially mitigate some or all of the technological or behavioral variation. This 
dynamic is illustrated in ES Figure 1, using hypothetical data. 
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ES Figure 1. Theoretical benefit of automated M&V in combination with ESCO 
Guarantee mechanism.  

In ES Figure 1, the red distribution is the performance profile that could occur during 
operation of an energy efficiency project due to technological, behavioral, and 
meteorological variation. ESCOs could consider a portion of this performance profile 
sufficiently unlikely to offer a guarantee against that performance risk. The green line, 
meanwhile, represents the performance profile that could occur during operation of an 
energy efficiency project that has automated M&V controls installed – performance risk 
is reduced due to higher control on operation. Looking at this new curve, the ESCO could 
consider a higher guarantee, thus making the project more attractive to all parties 
involved. The benefit of a higher guarantee can be positioned against the additional 
investment cost of the automated M&V controls. 

To model this effect, we take a series of steps: 

• Step 1: Model benchmark energy use and costs of several building types: A 
hypothetical energy efficiency project is created using benchmark buildings from 
the U.S. Department of Energy. We model six benchmark building types: small, 
medium, and large office, primary and secondary school, and hospital. Using DOE 
software application EnergyPlus, we model the energy use and associated cost of 
the pre-retrofit building. 

• Step 2: Model ‘riskless’ energy performance of retrofit: A next step in the 
modeling effort is to determine the level of savings obtained from an energy 
efficiency project that would work exactly according to specification. This case 
represents what technology upgrade could achieve if operated as determined prior to 
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allowing for behavioral, meteorological, and other influences that could limit 
performance. In effect, this level represents what could be seen as an “engineering 
estimate”, conducted along energy efficiency project guidelines.  

• Step 3: Model performance downgrade: the assumption of riskless performance 
is doubted by investors and ESCOs.  ESCOs typically lower their guarantee below 
the engineering estimate accompanying equipment specification in order to 
insulate themselves from the risk of possible variation. The literature review in 
this report and the 2016-2017 final report discusses empirical evidence of this non-
zero risk. To model the risk here, we use a 15% performance downgrade of the 
operation of the equipment.  

• Step 4: Model performance variation with and without automated M&V 
technology in place: The energy efficiency retrofit project could choose to have 
some or all of its ECMs use automated M&V technology to rein in performance 
variation. We assume automated M&V eliminates the performance variation in its 
entirety (i.e., the equipment operates in accordance with the specified parameters 
when controlled with automated M&V technology components). However, the 
installation of these components comes at an additional cost.  

In this Executive Summary, we outline one hypothetical energy efficiency project for 
consideration. The project summary provided below is for a hypothetical medium-sized 
benchmark office building located in Delaware. Step 1 refers to data collection and 
control, which is excluded from the summary below but provided in the main body of 
the report. 

Step 2: The ‘riskless’ performance summary for a medium-sized benchmark office 
building is reported in ES Table 1. At pre-retrofit conditions, this medium-sized 
benchmark building has an annual utility bill of $125,683. A hypothetical retrofit audit of 
the building shows options for lighting and plug load upgrade. A $166,000 investment 
can upgrade the lighting level to an engineering estimate performance level of 6.46 W/m2 
while a $31,272 investment can improve plug load performance to 8.07 W/m2.  
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ES Table 1. Overview of ECMs performance, cost, and savings profile for a medium-size benchmark 
office when performance is assumed to be riskless. 

ECM 
Pre-

Retrofit 
Efficiency 

Retrofit 
Cost 

Post-
Retrofit 

Efficiency 
Value 

% 
Reduction 

Upfront 
Capital 

Investment 
($) 

Savings 
/ year 

Simple 
Payback 
(years) 

1 - Lighting 16.89 
W/m2 

33.32 
$/m2 

6.46 
W/m2 ~62% $166,000 $23,949 6.9 

2 – Plug 
Loads 

10.76 
W/m2 

6.28 
$/m2 

8.07 
W/m2 25% $31,272 $9,446 3.3 

3 - Combined 
ECMs 
Project 

NA NA NA NA $197,272 $32,975 6.0 

Note:  Data crosschecked with ESCO industry professional to ensure accuracy. Future installments of 
research outputs will further improve accuracy by means of interacting with multiple technology 
providers. Calculation results shown here are for each ECM when modeled independently of each other in 
rows 1 and 2 while modeled in combined operation for row 3. Savings per year are calculated for an 
electricity price of 12.41 cents/kWh and a natural gas price of 1.208 dollars per therm, as per Energy 
Information Administration (EIA) data.  

Step 3: Next, the operation of each ECM independently at a level 15% below the 
“engineering estimate” is calculated. Accordingly, ES Table 2 shows the performance 
level for ECM 1 – Lighting when operated at an efficiency of 7.43 W/m2 (15% below the 
6.46 W/m2) and for ECM 2 – Plug Loads at 9.28 W/m2. Such a project overview yields 
lower annual savings for the same cost and, as such, has a simple payback period that is 
longer than illustrated above. This result represents the case where an ESCO is assumed 
to be comfortable guaranteeing performance – the vertical red ESCO guarantee line in ES 
Figure 1.  
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ES Table 2. Overview of ECMs performance, cost, and savings profile for a medium-sized benchmark 
building located in Delaware. The Table shows the performance level at a 15% downgrade. 

ECM 
Pre-

Retrofit 
Efficiency 

Retrofit 
Cost 

Post-
Retrofit 

Efficiency 
Value 
(15% 

downgrade) 

% 
Reduction 

Upfront 
Capital 

Investment 
($) 

Savings 
/ year 

Simple 
Payback 
(years) 

1 - Lighting 16.89 
W/m2 

33.32 
$/m2 7.43 W/m2 ~56% $166,000 $21,763 7.6 

2 – Plug 
Loads 

10.76 
W/m2 

6.28 
$/m2 9.28 W/m2 ~14% $31,272 $5,223 6.0 

3 – Combined 
ECMs 
Project 

NA NA NA NA $197,272 $26,763 7.4 

Note:  Data crosschecked with an ESCO industry professional to ensure accuracy. Future installments of 
research outputs will further improve accuracy by means of interacting with multiple technology 
providers. Calculation results shown here are for each ECM when modeled independently of each other in 
rows 1 and 2 while modeled in combined operation for row 3. Savings per year are calculated for an 
electricity price of 12.41 cents/kWh and a natural gas price of 1.208 dollars per therm. 

If no automated M&V controls are implemented, it is possible that performance is closer 
to specification than the established ESCO guarantee. In other words, actual realized 
savings could be higher than the guarantee – we estimate the possible performance range 
of the energy efficiency project for the medium-sized benchmark building as illustrated 
in ES Figure 2 below. Using the triangular distribution of performance variation reveals 
that higher levels of performance are available if strategies to mitigate behavioral, 
technological, and other risk factors are put in place. The difference between ES Table 1 
and ES Table 2, along the probability distribution illustrated in ES Figure 2 represents the 
opportunity for automated M&V to accelerate the energy efficiency sector. We assume 
here that full implementation of automated M&V technology yields the upper value of 
energy savings – the maximum distance between the ESCO guarantee and specification.  
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ES Figure 2.  Variation in annual utility costs due to assumed post-retrofit performance variation for 
both lighting and plug loads. 

Step 4: ES Table 2 can be amended to yield a new profile for the energy efficiency project 
where automated M&V controls are installed to avoid expected performance variation 
(see ES Table 3). The additional cost of the automated M&V technology is partially 
mitigated by the higher guarantee of savings. In particular, the results provided in ES 
Table 3 below shows that the additional savings per year from plug load controls lowers 
the overall simple payback from 6 years to 5.7 years. The additional cost for lighting 
controls, as modelled here, appears to extend the payback period from 7.6 years to 8.4 
years. Whether the additional cost is worthwhile depends on assumptions of project 
lifetime and other financial parameters.  

ES Table 3. Overview of automated M&V contribution and specifics.  

ECM 

Old ESCO 
Guarantee (ES 

Table 2) 
Automated M&V Application 

New ESCO 
Guarantee 

Savings 
/ year 

Simple 
Payback 
(years) 

Automated 
M&V Cost 

($) 

Performance 
Level with 
Automated 

M&V 

Capital 
Investment 

with 
Controls ($) 

Savings 
/ year 

Simple 
Payback 
(years) 

1 - Lighting $21,763 7.6 $35,297 6.46 W/m2 $201,298 $23,949 8.4 
2 – Plug Loads $5,223 6.0 $22,369 8.07 W/m2 $53,641 $9,446 5.7 
3 – Combined 

ECMs 
Project 

$26,763 7.4 $57,667 NA 254,939 $32,975 7.7 

Note:  Data crosschecked with an ESCO industry professional to ensure accuracy. Future installments of 
research outputs will further improve accuracy by means of interacting with multiple technology 
providers.  
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When combined together, the overall payback period is only slightly longer than under 
old ESCO guarantee conditions (7.7 years instead of 7.4 years). The additional $6,212 in 
savings each year plus the other benefits that accompany installation of automated M&V 
could weigh up against the slightly longer payback period from the client’s, ESCO, and 
investor perspective. For instance, from the client’s perspective, the controls enable direct 
insight into performance and direct evaluation of deviation – the data essentially 
provides the client with extra capability to ensure the guarantee is met and to challenge 
the ESCO if necessary. The ESCO can promise a higher annual guaranteed level of 
savings and, as such, perhaps attract additional clients. Finally, the investor experiences 
a higher level in certainty of operations and, depending on assumptions of project 
lifetime and other financial parameters, perhaps a higher rate of return.  

 

. 
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1.0. Introduction 

Present-day energy consumption patterns could be significantly reduced through the use 
of energy efficiency strategies (e.g. Backlund, Thollander, Palm, & Ottosson, 2012). The 
size of the United States energy savings potential has been estimated at a significant 23% 
reduction opportunity by 2020 – equal to $1.2 trillion in energy savings (e.g. Granade et 
al., 2009). For comparison, estimates by the U.S. Energy Information Administration 
(EIA) suggest a total energy consumption of 106 quadrillion BTU by 2050, up from a 
current (2016) 96.5 quadrillion BTU (EIA, 2017). A particular target for energy efficiency 
retrofits is the built environment: buildings account for about 32% of total global final 
energy use and 19% of energy-related greenhouse gas emissions (Lucon et al., 2014). 
While almost 80% of 2005 energy use in buildings globally faces lock-in risk if no new 
energy efficiency strategies are applied, implementation of state-of-the-art energy 
efficiency measures in the built environment can significantly reduce energy use: 
modeling efforts show North American energy use reduction potential of 75%, Western 
European conservation possibilities of 72%, and Centrally Planned Asia and China 
energy use could be reduced by as much as 54% compared to a business as usual pathway 
(Ürge-Vorsatz et al., 2012). 

However, insufficient capital deployment for energy efficiency and conservation 
continues (Parker & Guthrie, 2016). While a series of challenges exist for the energy 
efficiency sector, a repeated criticism of energy efficiency retrofit projects is the neglect of 
substantive consideration of risk management techniques such as quantitative 
uncertainty analysis (QUA) or quantitative risk analysis (QRA) (Heo, Augenbroe, & 
Choudhary, 2013; Mathew, Koehling, & Kumar, 2006; Reddy, Maor, & Panjapornpon, 
2007; Walter, Price, & Sohn, 2014). Indeed, a series of expert interviews revealed that it is 
“common” in the energy efficiency industry to neglect uncertainties in the savings 
calculation (Kim, Anderson, & Haberl, 2016). 1 

It is important to note that, in the context of raising capital investment for energy 
efficiency projects, uncertainty can be debilitating to private investors. For instance, the 
Energy Efficiency Financial Institutions Group (EEFIG) emphasized that “uncertainty is 
treated very differently from risk by financial institutions who consider themselves 
consummate risk managers but whose credit committees are usually highly “uncertainty 
averse”. The result is a lack of appetite for energy efficiency investments, low motivation 
for new entrants to offer energy efficiency finance and increased financing costs (to overly 
compensate for the unknowns)” (Energy Efficiency Financial Institutions Group, 2015, p. 

                                                           
1 The study by Kim et al. does not provide an indication of the magnitude or frequency of this neglect.  
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69). A strategic shift from uncertainty to risk management is needed as a conditio sine qua 
non for the investment community is reasonable assurance of energy efficiency 
performance and financeability.  

Implementation of guaranteed energy savings agreements (GESAs) addresses this issue. 
Indeed, according to Goldman et al., the ESCO market has shifted and now 
predominantly uses guaranteed savings in energy performance contracting (EPC) 
projects (Goldman et al. 2005). Under a GESA-based approach, the ESCO guarantees a 
level of performance of the new equipment. This guarantee is intended to satisfy both the 
investor and the project host (e.g. the building owner) by limiting exposure to (external) 
risks. The guarantee, in other words, is the key component in EPC contracts where capital 
works upgrades are covered by future cash flow. However, the approach depends on the 
level of performance the ESCO is willing to guarantee.  

The ESCO, as such, is faced with a key choice: on the one hand, conservative guarantees 
align with the ESCO’s risk averse character but, on the other hand, high-energy savings 
guarantees can get more favorable financing rates or convince the client to engage in the 
contract (Deng et al. 2015). In other words, a higher guarantee attracts more investment 
and convinces more clients to collaborate with the ESCO but, at the same time, can expose 
the ESCO to too much risk – failure to deliver a level of performance in line with the 
guarantee can have serious consequences for the ESCO.  

As such, typically, a guarantee level appears to be set lower than the expected actual 
performance of the equipment. This is supported by empirical evidence. For instance, 
analysis results of a Oak Ridge National Laboratory database found that, in aggregate, 
the 102 projects in the database saw savings 8% higher than the cost saving guarantee 
(Shonder & Hughes, 2007). Similarly,  an analysis by Hopper et al. found greater savings 
than the guarantee in 72% of the cases evaluated from their NAESCO/LBNL database 
(Hopper et al. 2005).  

Critically, any performance above the guarantee benefits only the client: agreement on 
debt service payments, interest rates, etc. is based on the ESCO guarantee. The investor, 
as such, yields no additional benefit from performance levels beyond those stipulated in 
the original contracts and installment payment agreements. To accelerate investment in 
the sector, therefore, pathways that allow for a guarantee of higher performance by 
reducing risk exposure are needed. As outlined in the previous 2016-2017 report, 
automated M&V technology components offer to fulfill this function: automated and 
sophisticated technology control of the energy system of a building could reduce 
exposure to behavioral, technological, meteorological and other risks and enable the 
ESCO to submit a higher guarantee. The higher guarantee, in turn, convinces more clients 
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to participate in energy efficiency projects and, importantly, attracts higher levels of 
investment. 

A conceptual and modeling approach is developed and applied throughout this report 
in order to quantify investor risk mitigation in relation to building energy performance 
uncertainty in energy efficiency retrofit projects. The methodological approach makes use 
of EnergyPlus (an existing whole building energy simulation program sponsored by the 
U.S. Department of Energy), a Monte Carlo assessment approach to quantify probability 
distributions of both savings and costs for a selection of energy conservation measures 
(ECMs). Risk reduction effects provided by the use of automated M&V techniques is then 
quantified to determine risk mitigation recommendations for use in the energy efficiency 
retrofit industry. The analysis described in the following sections suggests automated 
M&V provide suitable risk mitigation options and could be integral in enabling and 
accelerating the energy efficiency retrofit investment decision-making process in 
particular and the energy efficiency sector in general.  

This report first establishes the characteristics of an emerging suite of automated M&V 
techniques (Section 1). Next, the methodological approach is described in detail (Section 
2). Results are provided in Section 3 while a discussion of the findings is central to section 
4. Section 5 of the report concludes the report. 
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2.0. Emergence of Automated Monitoring and Verification 
(M&V) 

The use of advanced data gathering and analysis methods can streamline and automate 
monitoring and verification efforts  - so-called “automated M&V” (also referred to in the 
extant literature as “intelligent efficiency” or “M&V 2.0” – and provide a potential means 
to reduce investor uncertainty and risk (Franconi et al., 2017; Granderson, 2013; Lin, 
Singla, & Granderson, 2017). Shaped by rapid advancements in two general fields (data 
analytics and improved data collection), new software and hardware capabilities could 
establish a new paradigm of real-time and comprehensive measurement and control 
regarding energy use profiles throughout the built environment (Franconi et al., 2017; 
Goldberg et al., 2015).  

The paradigm, in general terms, relies on enhancements in computing power, speed, and 
communications, to automatically measure and control the performance of a variety of 
devices and equipment at all levels of use (device-level, sub-meter level, whole-building 
level, community-level) in real-time (Granderson, Piette, Ghatikar, & Price, 2009; 
Granderson, Lin, & Mary, 2013; Rogers, Carley, Deo, & Grossberg, 2015). For example, a 
whole-building application of the automated M&V techniques – commonly called an 
“energy management information system” – can measure and control a wide variety of 
functions such as lighting, heating, cooling, and plug load use (e.g. computers, vending 
machines) and even non-energy functions such as security control. Broadly, these types 
of systems can be defined as “web-based analysis software, data acquisition hardware, 
and communication systems used to store, analyze, and display whole-building, system-
level, or equipment-level energy use” (Granderson & Lin, 2016). At minimum, these 
systems provide hourly interval meter data with graphical and analytical capabilities for 
assessment and response (Granderson & Lin, 2016). 

Much of this paradigm is already being rolled out. For example, over 30 electric 
companies in the U.S. are now at 100% deployment of “smart meters” (an essential 
hardware component of the new paradigm and often supported by intelligent software) 
as they have replaced old infrastructure (Cooper, 2016). Further growth of the paradigm 
will occur: the market is projected to grow rapidly from a 2015 level of 64.7 million 
installed smart meters in the United States to 90 million smart meters by 2020  (Cooper, 
2016). At a strategic level, however, the use of automated monitoring and verification is 
currently still in the “pilot stage” (Goldberg et al., 2015). These pilots currently occur 
mostly in commercial and industrial facilities with a high energy use throughput 
(Franconi et al., 2017). However, automated M&V is not limited in terms of sectoral 
application, particularly when relying on the storage capacity and computational speed 
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of the cloud: “cloud computing platform[s] for real-time energy performance M&V is 
applicable to any industry and energy conservation measure. With the M&V cloud 
platform, real-time and long-term energy performances can be obtained” (Ke, Yeh, & Su, 
2017). 

The pilot stage can further be characterized as one of targeting and opportunity 
identification – i.e. seeking out energy efficiency retrofit opportunities among the 
building stock (Goldberg et al., 2015; Lin et al., 2017). Importantly, such efforts enable 
savings through identification of suitable retrofit candidates but their application for 
quantifying savings in post-retrofit conditions is currently limited. It is this stage where 
this research effort directs its attention – the research is less focused on determining the 
better investment opportunity among a variety of candidate buildings and more focused 
on characterizing and enhancing the investment opportunity of a particular building by 
quantifying its energy savings profile and risk. To explore this further, it is first necessary 
to discuss the category of automated M&V technologies in more detail. A portion of this 
work was done in the 2016-2017 research effort which is briefly summarized below. In 
addition, we rely on work done in this field by researcher teams from the Lawrence 
Berkeley National Laboratory (LBNL) as they have established a foundation of 
knowledge in this field (Franconi et al., 2017; Granderson et al., 2009; Granderson, Piette, 
& Ghatikar, 2011; Granderson et al., 2013; Granderson, 2013; Granderson et al., 2015; 
Granderson, Price, Jump, Addy, & Sohn, 2015; Granderson et al., 2016; Granderson & Lin, 
2016; Granderson, Touzani, Fernandes, & Taylor, 2017; Lin et al., 2017).  

2.1. Automated M&V Costs  

A continuing problem in automated M&V research is the broad range of cost estimates 
of the technology (California Energy Commission, 2002; Granderson & Lin, 2016). A key 
reason for this broad range is the very wide scope of technological capabilities, software 
specifics, hardware options, and market deployment strategies. Overall, automated M&V 
market is relatively immature – much of the research estimates still rely on pilots, 
experimental designs, and short histories of data. In their attempt to quantify the cost for 
whole-building energy efficiency management systems, Granderson & Lin (2016) 
provide an example of this broad range: 

• Upfront costs ranging from $1,700 to $300,000. In normalized terms, this cost range 
is equivalent to 0.08 cents/square ft to 77 cents/square ft. 

• Annual ongoing costs ranging from $1,000 to $140,000, equivalent to 0.04 
cents/square foot to 15 cents/square foot. 
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• A 5-year cost of ownership from $31,000 to $790,000 or 2 cents per square foot to 
$1.1 per square foot.  

• Median values for upfront costs, annual costs, and 5-year ownership costs were 1 
cent, 1 cent, and 6 cents per square foot, respectively.  

Business model evaluation of the energy information systems in use today found that the 
most common application is a so-called “software-as-a-service” (SaaS) offering 
(Granderson & Lin, 2016). This model focuses on the delivery of automated M&V on a 
subscription-type basis (as opposed to actual procurement and ownership of the software 
or hardware by the customer). Payment of SaaS offerings is typically done through an 
up-front expenditure (for, among others, licensing and system configuration) and a 
recurring monthly or yearly subscription fee (Granderson & Lin, 2016).  

2.2. Automated M&V Savings 

Estimates of cost savings due to the use of automated M&V are scarce as well. Granderson 
& Lin (2016) report energy savings ranging from -3% to 47% with a median of 17% for 
individual buildings. For portfolios of buildings, savings ranged from 0% to 33% with a 
median of 8%. In terms of cost savings, Granderson & Lin (2016) found a range from $0 
to $1.5 per square foot (median: $0.4/sq. ft.) for individual buildings and $0 to $0.9 per 
square foot for a portfolio of buildings (median: $0.4/sq. ft.). However, indicative of the 
immaturity of the market, many of the automated M&V applications in Granderson & 
Lin’s (2016) sample only had one or two years of post-installation data. Additionally, the 
contribution of the automated M&V application of the energy information system can’t 
be separated from other energy efficiency activities performed at the locations sampled. 
A final point in consideration is that the sample cases differ in their original energy use 
intensity – a factor directly related to how much energy you can save is how much was 
originally being used. Nevertheless, Granderson & Lin (2016) report a high level of 
satisfaction among the users of energy information systems in their sample: 19 out of 21 
cases reported they positioned the energy information system as critical in achieving their 
energy savings. 

Other benefits also accompany the installation of automated M&V technology. For 
instance, automated M&V requires substantially fewer measurements in order to 
calculate models that demonstrate a high goodness-of-fit (Walter et al. 2014). As noted by 
Granderson et al. (2017), “common practice in the industry for whole-building M&V is to 
use 12 months of data for both the pre- and post-periods, however, this may be an artifact 
of historically having access exclusively to monthly whole-building data”. Automated 
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M&V allows for shorter periods of analysis due to the speed and data volume provided 
by advanced data analytic capability.  

Additionally, reductions in the time lag between installation and performance evaluation 
can improve project goal achievement (Franconi et al., 2017) and customer satisfaction. 
For instance, Goldberg et al. (2015) note how automated analysis of energy consumption 
patterns and data could begin providing useful feedback within one month of measure 
installation.  

The use of automated M&V furthermore has the promise of reducing labor time (and, as 
such, costs). A study by Granderson et al. (2017) estimated time requirements for 
automated M&V compared to conventional M&V processes and found needed labor time 
to conduct automated M&V at around 1 day for various processes, down from an original 
4-6 days.  

Other possible benefits of this new method include:  

• Portfolio level analysis and benchmarking: the automated and high-speed 
character of automated M&V allows for simultaneous analysis of large volumes of 
data in a standardized manner. As such, automated M&V opens up the 
opportunity of conducting M&V at the portfolio-level: analyzing many buildings 
with various degrees of retrofitting at the same time to draw useful conclusions 
about each individual building and the pool as a whole. This is a particularly 
useful attribute of automated M&V when considering large-scale financing of 
energy efficiency which typically includes many different buildings, building 
types, weather conditions, etc.  

• Anomaly and fault detection and timely identification of energy waste: 
automated energy anomaly detection using algorithmic baseline consumption 
models enable continues performance assessment (Haves, Wray, Jump, Veronica, 
& Farley, 2013).  

• Database building: the widespread use of advanced data collection tools and data 
analytics could improve existing databases on energy efficiency performance. The 
advanced nature of the data could, for instance, show why performance profiles 
differ for the same technology but under different conditions. An assessment of 
energy efficiency finance limitations, for instance, explicitly notes how current 
limitations in data availability, quality, and access restrict investment in the sector 
(Energy Efficiency Financial Institutions Group, 2015; Parker & Guthrie, 2016). 

• Standardization and transparency: the availability of data could prompt 
standardization and certification efforts. In addition, automated M&V offers a 
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substantial opportunity for two-way data provision and analysis where developer 
and client have same-level access and understanding of the building’s energy 
conditions. Through interface options such as online dashboards, clients could 
have direct insight into not only the functioning of their property but also into the 
savings profile (and potential shortfalls in that profile). As Goldberg et al. (2015, 
p. 60) note: “the majority of vendors of automated M&V tools have stated that they 
will provide full transparency of the equations, and the process of constructing a 
comparison group where relevant”.  

• Cost-effectiveness: automated M&V at scale with large speed and provision could 
represent a cost-effective pathway to rigorous and long-term M&V at potentially 
lower prices than conventional advanced M&V options. 

• Automatic conversion of energy consumption data into monetary information: 
automated M&V can include real-time utility tariff information to explicitly show 
the cost of energy used and saved. Provides a motivational stimulus to users 
(Granderson & Lin, 2016) but also investors as the system can communicate 
tangible dollar values of energy savings or energy waste.  

• Utility billing validation: automated M&V systems validate utility bills through, 
for instance not only continuous monitoring of peak load but also management of 
peak load consumption timing and scale to address demand charges. 
Additionally, streamlining of utility-related processes can minimize personnel 
requirements and can assist identification of metering or billing errors by 
automatically crosschecking consumption patterns with utility bills. 

• Automatic sustainability reporting: automatic conversion of energy use data into 
dimensions and metrics required to meet corporate or organizational 
sustainability reporting standards. 

2.3. Accuracy of Automated M&V  

Insight into the accuracy can be obtained by investigating the use of interval data (hourly 
or sub-hourly) to determine whether the amount of data reduces model error. Analysis 
of this kind shows that model accuracy improves with additional data but also shows 
that a saturation effect occurs after which point model error (on a building-by-building 
basis) no longer improves (Walter et al. 2014). In other words, model error information 
gained from analysis on only one or a few months can help predict model error across 
using years of data (Walter et al. 2014). 2 The analysis method used by Walter et al. (2014) 

                                                           
2 Walter et al. (2014) carefully note that this finding can not necessarily be extrapolated to other models 
than the one they used or to other buildings than the ones in their data set. Nevertheless, the finding 
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further allows for a determination of how much data is needed for specific intended M&V 
applications – different applications come with different guidance on accuracy 
requirements some of which can be met using interval data from very short timeframes.  

Other analysis similarly shows how the current industry standard of using 12 months 
pre- and post-retrofit data can be reduced to at least 9 months both before and after 
project implementation when using hourly model training data (Granderson et al. 2015; 
Granderson et al. 2015; Granderson et al. 2016). For instance, across a dataset of 537 
geographically diverse commercial buildings, Granderson et al. (2016) show that 
automated M&V models “hold great promise for scaling the adoption of building 
measured savings calculations using Advanced Metering Infrastructure (AMI)” as, even 
with only six months of hourly data to train the model, all models realized a predictive 
accuracy in line with accepted protocol guidelines. A similar investigation showed that 
model training using six months of interval data was “just as accurate as those based on 
a 12-month baseline period” (Granderson et al. 2015).  

Testing models available in the public domain, Granderson et al. (2015) showed that fully 
automated prediction of energy consumption use in a future period – in other words, no 
re-calibration or adjustment by an engineer – demonstrated median model error of under 
5% and mean errors of less than 9%. Semi-automated prediction of energy use, allowing 
for instance for pre-screening of buildings that are not particularly predictable or other 
measures that an engineer could deploy, could further improve the predictive accuracy 
of these models. Similarly, testing ten different models with varying levels of complexity 
and computational efficiency resulted in a qualitative statement that three models had 
“medium” accuracy while the remaining seven were seen as “high” accuracy 
(Granderson et al. 2016). Particularly when applying automated M&V on a population 
basis, so referring to a portfolio of buildings, predictive modeling of consumption 
patterns using automated M&V models yields the conclusion that these models are 
“compellingly accurate” (Granderson et al. 2017). Aggregation of savings in a building 
data sample “resulted in a decrease in the uncertainty, with the aggregated value falling 
below that of the best 10th percentile of the individual buildings” (Granderson et al. 2017).   

                                                           
provides an important insight: interval data could potentially reduce required timeframes to months 
instead of the current industry standard of 12 months. 
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3.0. Modeling Method to Determine Investor Risk Mitigation 
Contribution from Automated M&V 

To establish a conceptual and modeling approach for investor risk mitigation using 
automated M&V techniques, a methodological approach was developed that makes use 
of several key building blocks: 

• A building energy simulation software package, relying primarily on the 
Department of Energy’s EnergyPlus simulation tool; 

• A Monte Carlo assessment framework to determine risk profiles;  
• A cloud computing setup to enable large-scale analysis and simulation; and 
• A conceptual understanding of risk in energy efficiency projects. 

3.1. Building Energy Simulation Software 

Detailed building energy simulation tools provide capability to assess building ECM 
configurations. The use of such software is common in the energy efficiency industry 
(Kim et al., 2016). A leading software option is the Department of Energy’s (DOE) 
EnergyPlus simulation tool, which works off of DOE-2 algorithms (Fumo, 2014; Heo, 
Choudhary, & Augenbroe, 2012). EnergyPlus uses text input and output that can be 
integrated into an automated workflow, relies on first principles, is non-proprietary, is 
highly configurable, and avoids inaccuracies (Hygh, DeCarolis, Hill, & Ranji Ranjithan, 
2012). In addition, EnergyPlus provides a range of benchmark building models, 
improving ease of use (Deru, Griffith, & Torcellini, 2006). Indeed, the DOE building 
benchmark database represents “one of the largest” databases as it encompasses 
benchmark buildings for 16 building types across 16 locations and three construction 
periods (Corgnati, Fabrizio, Filippi, & Monetti, 2013). For the research conducted in this 
investigation, we used EnergyPlus Version 8.7.0 

3.2. Monte Carlo Assessment framework 

Another key component of the modeling approach used here is the introduction of 
probabilistic change in variables in order to capture any potential uncertainty in the 
estimates. To run the parametric evaluation of the uniform distributions, the sets of data 
were automatically incorporated into EnergyPlus using jEPlus, an open-source 
parametric analysis tool specifically designed for EnergyPlus simulations (Y. Zhang & 
Korolija, 2010). The jEPlus software provides flexible and structural parametric analysis 
opportunities and smooth operations (Park, Norrefeldt, Stratbuecker, Grün, & Jang, 2013)  
and has been used in similar investigations to determine sensitivity or optimize energy 
systems (Lee, Lam, Lee, & Chan, 2016; Ramos Ruiz & Fernández Bandera, 2017; Singh, 
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Lazarus, & Kishore, 2016; B. Zhang, Liu, Rai, & Krovi, 2016). For the research conducted 
in this investigation, we used jEPlus Version 1.7.0. 

The parametric approach enables Monte Carlo analysis for risk estimation and 
management. Various forms of this method have been applied in similar investigations 
for instance in determining risk profiles of renewable energy projects, system planning, 
or system optimization (Arnold & Yildiz, 2015; Byrne, Taminiau, Kim, Seo, & Lee, 2016; 
Byrne, Taminiau, Kim, Lee, & Seo, 2017; Gurgur & Jones, 2010; Momen, Shirinbakhsh, 
Baniassadi, & Behbahani-nia, 2016; Pereira, Edinaldo José da Silva, Pinho, Galhardo, & 
Macêdo, 2014). Various authors have pushed for application of the approach for energy 
efficiency projects in general and M&V efforts specifically (e.g. Jackson, 2010). 

3.3. Cloud computing for large-scale analysis 

The parametric simulation of the whole building commonly requires the evaluation of 
many scenarios, each with their own configuration of the variables. The jEPlus software 
introduced above enables the analysis of a large number of scenarios. However, such 
simulation is accompanied by a large computing demand and a high simulation time 
barrier. The use of “cloud computing” (using remote computational power to run the 
simulations) significantly reduces the total simulation time as it can efficiently allocate 
simulations to multiple processor cores. Examples of the use of cloud computing for 
similar purposes as outlined in this article are available in the literature (e.g. Lee, Lam, 
Yik, & Chan, 2013; Zhang et al. 2016). 

To run the simulations in this investigation, we relied on Amazon Web Services (AWS) 
computing stations to perform the analysis. The “instance” (AWS jargon for the remote 
computer) used here was a Windows 2016, 8 vCPU, 32 GiB memory general purpose 
system. For the research reported in this report, we simulated two Energy Conservation 
Measures (ECMs) across 4 different scenarios. A full simulation was run for each hour of 
the year for each case in the building energy model. Next outputs of the research effort 
will include additional building types and additional ECMs. 

3.4. Modeling Risk and Uncertainty in Energy Efficiency Retrofit 
Cases 

The ECMs were modeled under different scenarios for a benchmarked pre-1980 large 
office building, as defined by EnergyPlus. 3 Three scenarios are tested: 

                                                           
3 The EnergyPlus database maintains several benchmark reference building models for a variety of building types, 
regions, and construction time periods. Regarding time periods, EnergyPlus separates benchmark models across 
pre-1980, post-1980, and new construction. We use the pre-1980 benchmark building model here to illustrate the 
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• Riskless Scenario: operation of ECMs is modeled according to equipment 
specifications without deviation in performance.  

• Performance Variation without Automated M&V Controls Scenario: performance 
variation is introduced under this scenario by means of a 15% downgrade along a 
triangular distribution. No automated M&V controls are implemented to mitigate 
the performance variation. Only downside risk is tested.  

• Risk Mitigation with Automated M&V Controls Scenario: Equipment performance 
variation is addressed by the additional installation of automated M&V 
technology components (hardware and software) leading to a full elimination of 
performance variation. The installation of automated M&V technology comes at 
an additional upfront cost.  

The central idea behind the three scenarios is that any retrofit demonstrates a distribution 
of performance around the equipment specifications due to behavioral, technological, 
and meteorological dynamics. This variation introduces uncertainty in energy savings 
and thus, this modeling approach focuses towards narrowing down variation in retrofits 
through a combination of control mechanisms. 

The Riskless Scenario involves modeling post-retrofit building operation with retrofit 
performance values in line with specifications for our our 2 defined ECMs:  

• Lighting Power Density (LPD) (“ECM 1 – Lighting”) and  
• Plug Load Density (“ECM 2 – Plug Loads”) 

The Riskless Scenario fixes performance of the two ECMs and post-retrofit savings and 
costs are calculated against pre-retrofit operation. This modeling effort case can be seen 
as representative of a conventional calculation of future energy savings (e.g. Kim et al., 
2016) or what can be called an “engineering estimate”. 

Next, using the jEPlus software platform, each of the ECMs was varied under a triangular 
distribution with a 15% downgrade in performance as the lower bound for 500 
simulations. The result is a distribution of possible performance. The lowest level of 
performance is one where both ECMs operate 15% below specification. This, therefore, 
represents the maximum expected risk level and is assumed to be the level where an 
ESCO is comfortable providing an energy savings guarantee. This calculation represents 

                                                           
energy savings potential of existing building stock that has been constructed according to outdated standards and 
guidelines for energy use – this section of the building stock represents an especially attractive target for the 
energy efficiency market due to their relatively high energy intensity. In addition, the large office space building 
type was selected for its general applicability – other categories provided by EnergyPlus are more specific (e.g. 
primary school, outpatient health care, quick service restaurant, etc.).   
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the second scenario: Performance Variation without Automated M&V Controls Scenario. 
Notably, under this scenario, no automated M&V controls are put in place under this 
scenario and only the downside risk (i.e. a 15% downgrade in performance) is tested – as 
accounted for by the literature review above and in the next section below, the investment 
community is interested in having a clear understanding of this downside risk profile. In 
other words, the potential upside of a risk distribution is not an effective argument to 
attract investment and, as such, is not included in the modeling effort. 

Finally, a third scenario models the risk mitigation effect of using automated M&V 
controls on the ECMs.  The scenario assumes that the combined application of automated 
M&V software and hardware is capable of enabling ECM performance in line with 
equipment specifications. In other words, at an additional investment cost, use of this 
new and advanced technology can fully eliminate the performance risk. Within this 
scenario, 4 different cases were constructed through a combination of controls on the two 
ECMs (see Table 4). These cases test the various selections of automated M&V controls 
available: a) the choice of no controls, b and c) the deployment of one control on either 
ECM, or d) the installation of controls on both ECMs. Using jEPlus modeling as described 
above, each of the four cases yields a performance profile with cost and savings against 
the pre-retrofit model.   

3.5. Incorporating Investor Risk Considerations 

Automated M&V application can substantially influence the risk profile of an energy 
efficiency project: as more variables are controlled with sophisticated technology and 
software, project risk decreases. This risk reduction effect of automated M&V is fairly 
straightforward – especially when considering our current modeling approach where the 
control succeeds fully at fixing the variable at its “engineering estimate” value. A follow-
up analysis could document how the results differ when allowing for: 

• instead of elimination of variability, a reduction in variability, or 
• time dynamics throughout the lifetime of the project, and 
• additional benefit arising from the use of automated M&V.  

The risk reduction effect provides insight into possible investment options. In our 
modeling approach, full automated M&V control of both ECMs delivers an energy 
efficiency retrofit project directly in line with the Riskless Scenario estimate as both ECMs 
are fixed at their “engineering estimate” value. However, a second consideration is the 
cost of such an automated M&V scenario. Enhanced levels of risk reduction come at 
additional investment cost as automated M&V controls need to be purchased, installed, 
and operated. Using numbers derived from the literature and professionals in the ESCO 
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industry, we assess how this cost profile changes under different automated M&V 
options.  

Risk mitigation and additional cost can be squared away against each other to determine 
a selection. This selection would be motivated by the investor’s willingness to accept a 
level of risk. Less risk will come with additional investment to install and operate the 
automated M&V technology components. However, less risk also increases the prospects 
for profitability.  

3.6. Combined application of building blocks 

The combined use of the building blocks represented above yields an energy modeling 
approach capable of estimating the risk profile around each individual ECM and their 
combined risk profile. This risk profile can then be compared against the costs.  

The steps for this approach are the following: 

• Step 1: Model benchmark energy use and costs of several building types: A 
hypothetical energy efficiency project is created using benchmark buildings from 
the U.S. Department of Energy. We model six benchmark building types: small, 
medium, and large office, primary and secondary school, and hospital. Using DOE 
software application EnergyPlus, we model the energy use and associated cost of 
the pre-retrofit building. 

• Step 2: Model ‘riskless’ energy performance of retrofit: A next step in the 
modeling effort is to determine the level of savings obtained from an energy 
efficiency project that would work exactly according to specification. This case 
represents what technology upgrade could achieve if operated as determined prior to 
allowing for behavioral, meteorological, and other influences that could limit 
performance. In effect, this level represents what could be seen as an “engineering 
estimate”, conducted along energy efficiency project guidelines.  

• Step 3: Model performance downgrade: the assumption of riskless performance 
is doubted by investors and ESCOs.  ESCOs typically lower their guarantee below 
the engineering estimate accompanying equipment specification in order to 
insulate themselves from the risk of possible variation. The literature review in 
this report and the 2016-2017 final report discusses empirical evidence of this non-
zero risk. To model the risk here, we use a 15% performance downgrade of the 
operation of the equipment.  

• Step 4: Model performance variation with and without automated M&V 
technology in place: The energy efficiency retrofit project could choose to have 
some or all of its ECMs use automated M&V technology to rein in performance 
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variation. We assume automated M&V eliminates the performance variation in its 
entirety (i.e., the equipment operates in accordance with the specified parameters 
when controlled with automated M&V technology components). However, the 
installation of these components comes at an additional cost.  
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4.0. Data Sources and Description 

Several data inputs are necessary for the methodological approach outlined in the 
previous section:  

• A hypothetical benchmark building; 
• Use of a post-retrofit condition where a selection of variables are modified to a 

lower energy-using state; 
• A listing of ECMs considered and their associated cost profile; 
• Variability parameters for each ECM to determine the risk profile. 
• A listing of automated M&V options and their associated cost profile. 

4.1. Hypothetical benchmark building description 

The prototypical benchmark building models provided by EnergyPlus are used 
throughout the analysis. Our analysis focuses on the small, medium, and large office 
buildings as well as on the primary and secondary school building types and a 
benchmark hospital. These six building types are evaluated according to the step-by-step 
process outlined above (for a full listing of benchmark commercial building models, see: 
https://energy.gov/eere/buildings/commercial-reference-buildings and Deru et al. 
(2011).  Benchmark building version numbers were updated to version 8.8.0 using the in-
built EnergyPlus utility. The hypothetical office building was assumed to be located in 
Baltimore, MD (the closest location to Delaware available in the database) and, as such, a 
corresponding typical meteorological weather (TMY) filetype 3 (TMY3) was used.  

Table 1.  Overview of the six benchmark pre-retrofit building models. 

Dimension 
Office by varying size School type 

Hospital Small Medium Large Primary Secondary 
Climate Region Baltimore, MD 
Total gross floor area (sq. m) 511 4,982 46,320 6,871 19,592 24,422 
# of floors 1 3 12 1 2 5 
Aspect ratio 1.5 1.5 1.5   1.31 
Window-to-wall ratio 21.2% 33.0% 38.0% 35% 32.7% 14.6% 

 

4.2. ECMs considered and their associated cost profile 

Drawing from the Building Component Library (BCL) operated by OpenStudio and from 
several articles using a similar methodological approach (Hygh et al. 2012; Lee et al. 2013; 
Lee et al. 2016), two energy conservation measures were selected. This selection will be 
expanded in the next phase of the research. The ECMs and their associated investment 

https://energy.gov/eere/buildings/commercial-reference-buildings
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cost, taken from the Lawrence Berkeley National Laboratory (LBNL) City Building 
Energy Saver (CityBES) (https://citybes.lbl.gov/) – an online simulator and database for 
city-scale building retrofit analysis (Chen, Hong, & Piette, 2017; Hong, Chen, Lee, & 
Piette, 2016) – are provided in Table 2. The costs for light controls were referred from 
Whole Building Design Guide (WBDG), a program of the National Institute of Building 
Sciences (https://wbdg.org). Case studies from General Services Administration (GSA), 
U.S. Energy Information Administration (EIA), Madison Gas and Electric Company 
(MGE) were also used to derive information on control costs for other ECMs. 

Note that the cost estimates provided here are preliminary numbers. We expect that 
crosschecking the source material with other findings will present a broader range of 
retrofit costs that can alter the results.  

Table 2. Overview of ECMs considered in the analysis and their cost estimate. Pre- and 
post-retrofit values presented for the large office benchmark building 

ECM 
Pre-

Retrofit 
Efficiency 

Retrofit Cost 
Post-Retrofit 

Efficiency 
Value 

% Reduction 

ECM 1 – Lighting 16.14 
W/m2 33.32 $/m2 6.46 W/m2 60% 

ECM 2 – Plug Loads 10.76 
W/m2 6.28 $/m2 8.07 W/m2 25% 

Note: cost data cross-checked with ESCO industry expert. Note also that the large office 
building has 46,320 square meters of floor space. This brings the installment cost to $1,425,266 
for lighting, $290,751 for plug loads, and a total project cost of $1,716,017. 

4.3. Post-retrofit model (“Riskless Scenario”) 

The post-retrofit model of the “large office” building modifies the pre-retrofit model 
based on the selection of ECMs listed above and their associated energy performance 
values. The post-retrofit model does not yet include the performance variability and, as 
such, can be seen as the “engineering estimate” of the performance of the energy 
efficiency retrofit project. This is the “Riskless Scenario” described above.  

4.4. Variability parameters for the Monte Carlo Analysis 

Essential in Monte Carlo analysis procedures is the variability assigned to each 
parameter. Data regarding performance uncertainty and variability, however, is limited. 
In general terms, two types of errors influence the uncertainty level in determining the 
energy savings from a project. First, systematic errors (also called bias) reflect the error 
term in a measurement or analytic method that systematically underestimates or 
overestimates a value. Second, random errors complicate energy savings assessment and 

https://citybes.lbl.gov/
https://wbdg.org/
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require probability calculations to adjust the savings estimate. Due to their characteristics 
and relative ease of calculation, “uncertainty is typically calculated and reported through 
the objective analysis of random errors and the subjective analysis of systematic errors” 
(SEEAction, 2012).  

4.4.1. Model Error or Bias 

Common metrics to establish bias in modelling efforts are the monthly and annual Mean 
Bias Error (MBE, also called ERR) and Coefficient of Variation of the Root-Mean Squared 
Error (CV RMSE). 4 Guidelines on the acceptable error tolerance have been developed 
under several frameworks as provided in Table 3. For instance, ASHRAE 14 stipulates 
that CV RMSEmonth needs to be within 15% of the use of monthly utility data for a model 
to be considered ‘calibrated’ (Coakley, Raftery, & Keane, 2014). Such an approach 
produces a deterministically calibrated baseline model and can be seen as “optimistic” as 
several sources of uncertainty are ignored (Heo et al. 2013). Moreover, calibration 
uncertainty can stem not only from uncertainties associated with the inputs but also with 
the inaccuracy of the base model itself: “base models themselves often involve a certain 
level of inaccuracy as they are typically calibrated based on the final modeling outputs, 
which could be results of different inputs” (Bozorgi & Jones, 2014). Such inaccuracies of 
the base model are often ignored (Bozorgi & Jones, 2014. p. 418).  

Additionally, establishing validity of energy savings through such error indicators for 
the project as a whole restricts risk management as the standard deviation of the savings 
estimate a) is not derived from a probabilistic distribution (due to propagating 
uncertainty throughout its calculation) and b) can’t parse out uncertainties associated 
with individual ECMs (it establishes a uniform risk magnitude for all used retrofit 
options) (Heo et al. 2013). The approach also motivates the energy analyst to “tune” or 
“fudge” input parameters until base model error terms fall within acceptable limits 
(Coakley et al. 2014). Models with the lowest error, deemed ‘calibrated’ under the figures 
provided in Table 3 are as such not necessarily the ones with best or realistic performance 
profiles. 5 

                                                           
4 Earlier efforts to determine the efficacy of building simulation relied on simple percent difference calculations.  In 
1995, Bou-Saada and Haberl suggested the adoption of standardized statistical indices which better represent the 
performance of a model (Bou-Saada & Haberl, 1995). 
5 One way to overcome this limitation is to use multiple base models (Bozorgi & Jones, 2014). The base model is the 
existing, pre-retrofit building model without installed ECMs. Such an approach is a first step into considering the 
uncertainties associated with energy simulation without requiring additional data inputs. In other words, variation 
in the data inputs to determine the baseline model provides a probability distribution of likely energy use in the 
counterfactual scenario that can be used to determine the overall savings level with a precision and distribution 
statement.  
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Table 3. Acceptable error tolerance for monthly data calibration in three recognized frameworks 
(Coakley et al. 2014) 

Index ASHRAE 14 IPMVP FEMP 
MBE (hourly) +/- 10% +/- 5% +/- 10% 
MBE (monthly) +/- 5% +/- 20% +/- 5% 
CV RMSE (hourly) +/- 30% +/- 20% +/- 30% 
CV (RMSE monthly) +/- 15% - +/- 15% 

4.4.2. Building Performance Gap 

The literature further informs about potential performance uncertainty of energy 
efficiency projects (see first-year report of this three-year research). A detailed description 
of this performance uncertainty was provided in the final report of the 2016-2017 research 
effort. Here, key points are briefly reiterated. Discrepancies between predicted and actual 
metered building energy use have been found and, together, these discrepancies can be 
grouped under what has been called the ‘performance gap’ or ‘credibility gap’ (Bordass, 
2004; Galvin, 2014; Karlsson, Rohdin, & Persson, 2007; Menezes, Cripps, Bouchlaghem, 
& Buswell, 2012; Sunikka-Blank & Galvin, 2012). For example, energy performance gap 
analysis for a set of buildings in the south of Germany found overestimates of energy 
savings by as much as 287% (Calì, Osterhage, Streblow, & Müller, 2016). In other words, 
some of the buildings in the study consumed almost three times more energy per year 
than expected.  

As a first order approximation, we apply here a 15% performance downgrade in the 
performance range of the four ECMs to account for behavioral, technological, and 
environmental variability. The values of the two ECMs used in this investigation are 
given in Table 4. 

Table 4. Overview of the inputs for the two ECMs to incorporate variability 

ECM Post-retrofit 
efficiency 

value 

15% performance downgrade (triangular 
distribution)* 

ECM 1 – Lighting 6.46 W/m2 7.43 W/m2 
ECM 2 – Plug Loads 8.07 W/m2 9.28 W/m2 

* Note: underperformance is measured in different ways across ECMs due to the difference in units. 
Lighting and plug loads, both in W/m2, show underperformance when the value of performance is 
higher than the nominal value (i.e. a higher level of energy use per square meter).  
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4.5.  Automated M&V Control Cost and Performance 

To model the contribution of automated M&V to risk reduction, 4 cases were designed 
and are described in Table 5. Importantly, we include a chiller control option in all four 
cases – the analysis found that chiller replacement is cost prohibitive unless at end-of-life. 
As such, we only consider the chiller automated control option here. When a control is 
applied, the performance of the variable is fixed at its nominal value. In the table below, 
a value of 1 suggests that control has been applied to the variable whereas 0 indicates 
there is no control applied to the variable.   

Table 5. Overview of 4 different cases constructed with automated M&V 

Parameters Case-0 Case-1 Case-2 Case-3 
Lighting 0 1 0 1 
Plug Loads 0 0 1 1 
Chiller controls (large office building only) 1 1 1 1 

 

The cost of the automated M&V intervention is established at the values provided in 
Table 6. Sources for the data represented in Table 6 are the LBNL CityBES project (Chen, 
Hong, & Piette, 2017; Hong, Chen, Lee, & Piette, 2016) and the Whole Building Design 
Guide (WBDG, a program of the National Institute of Building Sciences 
(https://wbdg.org)). Case studies from General Services Administration (GSA), U.S. 
Energy Information Administration (EIA), Madison Gas and Electric Company (MGE) 
were also used to derive information on control costs for the ECMs.   

Table 5.  Costs of Automated M&V controls for different ECMs. Chiller controls are 
only tested on the large office building benchmark.  

Automated M&V 
control option 

Cost profile Source 

Lighting controls $7.09/m2 LBNL CityBES project and the Whole 
Building Design Guide Plug load controls $10.77/m2  

Chiller controls 410,724 for large 
office building 

Crosscheck with ESCO industry expert averaged with 
case study analysis of real-world project 

Note: Cost specifications cross-checked with ESCO industry expert. 

 

 

 

https://wbdg.org/
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5.0. Results 

5.1. Results per building type 

For each of the six building types, the analysis provide in the Executive Summary was 
conducted. Below, the results of the analysis are provided for each key step with the 
exclusion of step 1 (data gathering and evaluation).  

Step 2: Determine the ‘riskless’ profile of the energy efficiency retrofit project.  

As introduced in the Executive Summary and above, the ‘riskless’ scenario essentially 
represents performance according to specification. Table 6 documents the findings for 
each of the building types. The differences are minor due to the small selection of ECMs 
and across-the-board assumptions. Nevertheless, some differences in performance for 
each investment can be observed due to variations in starting conditions of the building 
and different equipment use profiles. In particular, the primary school and hospital 
have starting conditions and energy use profiles that appear to make them favorable 
candidates for the proposed energy efficiency retrofit project.  

Note that for primary and secondary schools and for the hospital, we’re excluding 
portions of the building that are unlikely to fit the parameters of the proposed efficiency 
project. For example, the hospital building benchmark has operating rooms, emergency 
rooms, intensive care units (ICUs) and other very specific rooms that likely are not 
available for the type of retrofit in mind here. As such, these are excluded from the 
retrofit, reducing the total project upfront capital investment but also the level of 
possible savings.  

One explanation for the much shorter payback periods for the hospital plug loads is the 
energy use profile of the hospital – relying on a continuous operating schedule. The 
primary school benchmark has computer rooms and other rooms with high plug load 
use levels that could benefit from the proposed retrofit.  
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Table 6. Overview of research results for each of the six building types under 
investigation when performance is assumed to be riskless. 

Parameters 
Office Buildings School Type 

Hospital 
Small Medium Large Primary Secondary 

Pre-retrofit 
efficiency 
(W/m2) 

ECM 1 19.48 16.89 16.14 Various* 

ECM 2 10.76 Various* 
Retrofit cost 
($/m2) 

ECM 1 $33.32 
ECM 2 $6.28 

Post-retrofit 
efficiency 
(W/m2) 

ECM 1 6.46 
ECM 2 8.07 

Upfront capital 
investment ($) 

ECM 1 $17,027 $166,000 $1,543,382 $179,262 $461,682 $544,354 
ECM 2 $3,208 $31,272 $290,751 $33,770 $86,974 $102,548 
Entire 
Project $20,234 $197,272 $1,834,133 $213,032 $548,656 $646,902 

Savings/Year 
($) 

ECM 1 $2,687 $23,949 $201,608 $43,548 $72,682 $132,779 
ECM 2 $817 $9,446 $77,577 $15,642 $10,343 $63,900 
Entire 
Project $3,463 $32,975 $277,470 $58,842 $82,439 $190,192 

Simple 
payback (years) 

ECM 1 6.3 6.9 7.7 4.1 6.4 4.1 
ECM 2 3.9 3.3 3.7 2.2 8.4 1.6 
Entire 
Project 5.8 6.0 6.6 3.6 6.6 3.4 

Savings per year are calculated for an electricity price of 12.41 cents/kWh and a natural gas price of 1.208 
dollars per therm, as per Energy Information Administration (EIA) data. 

* Note: for the schools and hospitals, different rooms have different original energy use conditions. For 
schools, we only retrofit the following room types: classroom, corridor, offices, library, bathroom, and lobby. 
For hospital, we only retrofitted the following spaces: office rooms, lobby, corridor, patient waiting rooms, 
basement, and nurse rooms. We exclude, for instance, emergency rooms or intensive care units as these 
likely have specific lighting and plug load requirements.  

Step 3: Determine the performance downgrade 

We assume here that the ESCO is comfortable agreeing to a performance guarantee that 
is 15% below specification. Effectively, this means that for the same investment, fewer 
savings are estimated to be attained. This is modeled for all six building types and 
reported in Table 7.  
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Table 7. Overview of six building type performance when a 15% downgrade is 
applied. 

Parameters Office Buildings School Type 
Hospital* 

Small Medium Large Primary* Secondary* 
Post-retrofit 
efficiency 
(W/m2) (15% 
downgrade) 

ECM 1 7.43 

ECM 2 9.28 

Upfront capital 
investment ($) 

ECM 1 $17,027 $166,000 $1,543,382 $179,262 $461,682 $544,354 
ECM 2 $3,208 $31,272 $290,751 $33,770 $86,974 $102,548 
Entire 
Project $20,234 $197,272 $1,834,133 $213,032 $548,656 $646,902 

Savings/Year 
($) 

ECM 1 $2,495 $21,763 $181,520 $30,286 $63,805 $122,632 
ECM 2 $452 $5,223 $42,713 $12,858 $9,305 $53,381 
Entire 
Project $2,923 $26,763 $223,325 $53,057 $68,805 $171,033 

Simple 
payback (years) 

ECM 1 6.8 7.6 8.5 5.9 7.2 4.4 
ECM 2 7.1 6.0 6.8 2.6 9.3 1.9 
Entire 
Project 6.9 7.4 8.2 4.0 8.0 3.8 

Savings per year are calculated for an electricity price of 12.41 cents/kWh and a natural gas price of 1.208 
dollars per therm, as per Energy Information Administration (EIA) data. 

* Note: for the schools and hospitals, different rooms have different original energy use conditions. For 
schools, we only retrofit the following room types: classroom, corridor, offices, library, bathroom, and lobby. 
For hospital, we only retrofitted the following spaces: office rooms, lobby, corridor, patient waiting rooms, 
basement, and nurse rooms. We exclude, for instance, emergency rooms or intensive care units as these 
likely have specific lighting and plug load requirements.  

Step 4: Determine savings with and without automated M&V 

The final step in the analysis is to calculate the benefit of automated M&V (Table 8). As 
is reported in Table 8, under the assumptions listed throughout this report, automated 
M&V can reduce payback periods for plug loads in most circumstances. For lighting, 
we’re using a fairly high cost for the controls and, as such, in most cases the payback 
period extends beyond the original ESCO guarantee. The primary school benchmark 
building appears to be an exception to this findings as it is able to generate sufficient 
additional savings to deliver an overall shorter payback period despite the additional 
cost for the investment.  
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Table 8. Overview of research results for each of the six building types under 
investigation when performance is assumed to be riskless. 

Parameters Office Buildings School Type 
Hospital* 

Small Medium Large Primary* Secondary* 

ESCO 
Guarantee 

Savings / year 

ECM 1 $2,495 $21,763 $181,520 $30,286 $63,805 $122,632 
ECM 2 $452 $5,223 $42,713 $12,858 $9,305 $53,381 
Entire 
Project $2,923 $26,763 $223,325 $53,057 $68,805 $171,033 

Simple Payback 
(years) 

ECM 1 6.8 7.6 8.5 5.9 7.2 4.4 
ECM 2 7.1 6.0 6.8 2.6 9.3 1.9 
Entire 
Project 6.9 7.4 8.2 4.0 8.0 3.8 

Automated 
M&V 
application 

Automated 
M&V Cost ($) 

ECM 1 $3,620 $35,297 $328,177 $38,117 $98,170 $115,749 
ECM 2 $2,294 $22,369 $290,751 $24,156 $62,213 $73,354 
Entire 
Project $5,915 $57,667 $536,154 $62,274 $160,383 $189,103 

Performance 
level with 
automated 
M&V (W/m2) 

ECM 1 6.46 

ECM 2 8.07 

Capital 
investment 
with controls 
($) 

ECM 1 $20,647 $201,298 $1,753,444 $217,379 $559,852 $660,103 
ECM 2 $5,502 $53,641 $498,727 $57,926 $149,188 $175,902 
Entire 
Project $26,149 254,939 $2,252,171 $275,305 $709,039 $836,005 

New ESCO 
Guarantee 

Savings/Year 
($) 

ECM 1 $2,687 $23,949 $201,608 $43,548 $72,682 $132,779 
ECM 2 $817 $9,446 $77,577 $15,642 $10,343 $63,900 
Entire 
Project $3,463 $32,975 $277,470 $58,842 $82,439 $190,192 

Simple payback 
(years) 

ECM 1 7.7 8.4 8.7 5.0 7.7 5.0 
ECM 2 6.7 5.7 6.4 3.7 14.4 2.8 
Entire 
Project 7.6 7.7 8.1 4.7 8.6 4.4 

Savings per year are calculated for an electricity price of 12.41 cents/kWh and a natural gas price of 1.208 
dollars per therm, as per Energy Information Administration (EIA) data. 

* Note: for the schools and hospitals, different rooms have different original energy use conditions. For 
schools, we only retrofit the following room types: classroom, corridor, offices, library, bathroom, and lobby. 
For hospital, we only retrofitted the following spaces: office rooms, lobby, corridor, patient waiting rooms, 
basement, and nurse rooms. We exclude, for instance, emergency rooms or intensive care units as these 
likely have specific lighting and plug load requirements.  

5.2. Risk Reduction Effect of Automated M&V 

Risk reduction effect of using automated M&V: Using the standard deviation of annual 
savings as an indication of risk allows for the quantification of risk profiles. The result of 
this analysis is provided in Figure 1 for the large office benchmark building. The case 
where no controls are implemented reflects maximum risk while the case where both 
ECMs are under automated M&V control eliminates all risk. The other two cases 
represent risk profiles where only one of the ECMs is under automated M&V control 
while the is exposed to performance variation.  
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Figure 1. Risk reduction effect of automated M&V for each case. The measure of risk 
used here is the standard deviation in annual utility cost savings of the resulting 
performance distribution profile. A higher standard deviation is equivalent to a less 
certain performance profile – i.e. a higher chance of overshooting the original ESCO 
guarantee.  
Costs associated with each case: The automated M&V control system increases the 
overall project cost. The case where no automated M&V controls are implemented does 
not require any additional costs but also doesn’t mitigate the risk. The case where both 
ECMs are subject to automated M&V control is accompanied by the highest additional 
investment as software and hardware is acquired for lighting and plug load control 
technology. Lighting control technology comes at a higher additional cost than plug load 
control technology (see Figure 2).  

 

Figure 2. Costs associated with each portfolio of Automated M&V applications. 
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Comparing risk reduction effect per dollar invested: Finally, combining the above 
results yields perspective on the return per dollar invested for automated M&V 
application (Figure 3). Using the inputs and modeling described in this report, the 
analysis suggests adding plug load controls is the most cost-effective but the overall 
savings of the project are modest compared to the case of lighting with controls.  

  

Figure 3. Risk reduction effect from automated M&V applications. Risk reduction is 
modeled here as the percentage decrease in the standard deviation.  
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6.0. Concluding Remarks 

The conceptual and modeling approach deployed throughout this research effort 
provides insight into the dynamics of investor risk mitigation using automated M&V 
techniques. The research so far indicates that the use of automated M&V and Monte Carlo 
assessment techniques could modify investment decision-making when addressing 
uncertainty and investor risk.   

The research has followed several of the recommendations of the previous research effort. 
In particular, the research illustrated in this report has: 

• Used cloud computing services such as available through the University of 
Delaware, Amazon Web Services or Google Computing Engine to accelerate 
Monte Carlo analysis. This was a key recommendation of the 2016-2017 research. 
Calculations performed during 2016-2017 relied on in-house computing power 
which was deemed insufficient. Through the use of an Amazon Web Services 
(AWS) computing station, a new set of calculations was performed at considerably 
higher speed.  

• Financial assessment of automated M&V and probabilistic energy savings: The 
Monte Carlo analysis results were used as inputs for a preliminary financial model 
to determine some of the costs and benefits of automated M&V. In particular, the 
approach assists in the creation of an investor-ready energy efficiency finance 
structure that includes automated M&V for (a subset of) specific energy 
conservation measures.  

• Expand the analysis to additional building types: This research focused on one 
building type (i.e. large office) at this point but sixteen benchmark building models 
are available through EnergyPlus. The same research process as outlined 
throughout this report could be applied to the other benchmark building models 
to determine whether automated M&V serves different building types in different 
ways.  

Research efforts for the phase of 2018-2019 research will focus on, among others: 

• Advanced modeling with real-world data: Enabling access to real-world data 
could improve the application potential of the software and research architecture 
outlined in this report.  

• Enable Delaware-specific research models: Current modeling efforts use existing 
building benchmarks for Baltimore, MD. One of the research efforts moving 
forward could focus on the modification of the benchmark building model to 
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reflect Delaware-specific conditions (such as, for instance, weather, grid context, 
pricing, etc.). 

• Mapping weather variation (e.g., extreme weather events, climate change): 
Research effort can be directed at testing the automated M&V in a broader set of 
conditions. Weather variations, for instance, could substantially alter energy use 
patterns (even as they are sometimes short-lived) especially in financial terms (as 
energy prices can increase exponentially during hazardous weather conditions).  

• Portfolio analysis of buildings of different types: The inclusion of additional 
building types also allows for analysis of multiple buildings at once in order to 
determine the portfolio-based capabilities of automated M&V technologies. In 
particular, existing research shows that the accuracy of automated M&V 
commonly improves when applied across building types (Granderson et al. 2016). 

• Mapping technology default rates and continuous commissioning using 
automated M&V: While technology variation and default are indirectly captured 
in the Monte Carlo analysis presented throughout this report through probability 
distribution functions, direct inclusion of technology default rates and modeling 
of response options using automated M&V could further improve the model 
presented here. Such an effort could benefit from the technology performance 
databases that are emerging such as the U.S. Department of Energy’s Technology 
Performance Exchange (https://energy.gov/eere/buildings/technology-
performance-exchange). 

 

  

https://energy.gov/eere/buildings/technology-performance-exchange
https://energy.gov/eere/buildings/technology-performance-exchange
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