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EXECUTIVE SUMMARY 

This 2018-2019 Final Report documents the research outputs of an investigation into the potential 
of risk mitigation in energy efficiency retrofit projects by technology-based control of project 
performance. The report describes a model of the dynamics associated with investment in energy 
efficiency projects when applying technology control 1  of project performance under several 
scenarios. 

The energy efficiency retrofit market is subject to trust concerns between parties [1]. In 
particular, the ability of projects to deliver on promised savings is sometimes drawn into 
question [2; 3]. Trust concerns can be partly addressed through energy saving 
performance guarantees which now represent the dominant performance risk mitigation 
tool used in the market [4; 5]. The performance guarantee is based on the project’s 
characteristics, especially the suite of energy conservation measures (ECMs) that are 
installed as part of the project. Contractual stipulations arrange the conditions of the 
guarantee. Two dimensions stand out in this regard: 

1. All else being equal, a higher energy savings guarantee should reduce project 
performance risk. Therefore, methods that yield a higher energy savings guarantee 
could help accelerate the market [2; 3; 6]. 

2. The value and strength of the guarantee itself is sometimes questioned by the 
project host – i.e., there is mistrust by the project host that the energy service 
company (ESCO) will actually make the project host whole in cases of under-
performance [6; 7]. This position can result in a dispute and litigation to compel an 
uncooperative ESCO to compensate performance short-falls [6; 8-10]. Therefore, 
methods that advance inter-party trust could help accelerate the market.  

We explore these two dimensions in this research, with an emphasis on methods to raise 
the guarantee.  In particular, we review the ability of smart, automated, and connected 
technologies that can a) intelligently monitor and control the performance of energy-
consuming devices to reduce performance variations, b) provide additional degrees of 
control over the project’s operations, and, by doing so, c) possibly convince the ESCO to 

                                                           
1 In this report, technology control (e.g., occupancy sensors to control lighting functions) is used interchangeably 
with the term automation. We also sometimes ascribe the term ‘smart’ to this technology suite to describe their 
automated control protocols based on pre-determined algorithms. 
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raise the guarantee. To evaluate options regarding the strength and value of the 
guarantee, the report spends some time on energy efficiency performance insurance.  

RESEARCH OBJECTIVE I 
This research investigates the use of smart controls to restrict performance variation 
with the aim of extracting a higher energy savings guarantee.  

The research is built around the hypothesis that use of smart controls can strategically 
reduce performance variation, which yields a higher energy savings guarantee and, 
critically, accelerates the energy efficiency retrofit market. To evaluate this contribution, 
we focus on the dynamics of the energy savings guarantee setting process. The guarantee 
originates from the ESCO, which sets the guarantee based on its own confidence in the 
expected performance of the energy efficiency technologies installed as part of the project. 
This level of confidence is dependent on many variables, including a) the ESCO’s 
experience with the technologies used in question; and b) the ESCO’s tolerance for risk.  

The incentive for the ESCO in this regard is double-edged. On the one hand, the ESCO 
can be inclined to set the guarantee below the expected savings of the project – a lower 
guarantee results in a lower risk of dispute and need for performance shortfall 
compensation. On the other hand, a higher guarantee makes the ESCO more competitive 
to win the project bidding process.  

One way to accelerate the market could therefore be to identify a way for the ESCO to set 
a higher guarantee while not engaging in higher levels of risk. The level of possible 
project performance variation plays a major role in this context: all else being equal, a 
project with a high level of possible performance variation will produce a lower 
guarantee relative to a project with a low level of performance variation. Thus, the 
installation of performance control technology – which limits the range of possible 
performance variation – is a method that could result in a higher guarantee at the same 
level of risk.  

RESEARCH OBJECTIVE II 
This research explores the contribution of smart controls to advance inter-party trust 
that the guarantee is meaningful and will be observed in accordance to expectation. A 
role is reserved for energy efficiency performance insurance (to be explained in greater 
depth in the future). 
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Controls that can monitor and operate devices in real-time offer additional degrees of 
control over the overall project’s performance beyond simply narrowing possible 
performance variation. The presence of controls could advance inter-party trust if the 
information and data generated is available to all parties. Deeper understanding of 
project performance could help to move beyond ‘black box’ moral hazards that currently 
occur in the energy efficiency retrofit market. In this way, performance-focused controls 
can help reduce conflict and save time and costs in reaching consensus about viable 
projects for the ESCO and client alike. 

Energy efficiency performance insurance is introduced in this report as a possible tool to 
remove problems associated with inter-party trust: under-performance risk – and 
associated disputes and litigation between ESCO and project host – can be off-loaded to 
the third-party insurance company. But, this arrangement elevates transaction costs of 
the overall project. This research attempts to quantify some of these costs. Research 
objective II is explored but research outputs are preliminary – further research is required 
to more closely disentangle the various dynamics. 

RESEARCH APPROACH 
The research follows several steps to pursue the research objectives: 

Part 1: Controls and the Energy Savings Guarantee (Section 1.0 to 4.0 of this report) 

Section 1.0: Identify and characterize building performance variation, including 
underlying causes and risks 

• There is concern regarding performance uncertainty, captured in the literature as an 
energy savings “credibility gap” or “performance gap” [11-14]. 

• Expected or experienced manifestation of performance risk leads some clients to 
emphasize concern “about ESCO’s guaranteed savings not being achieved, causing 
problems to third party financing” as a top worry [6]. In a similar vein, “uncertainty 
of payments based on energy savings” is listed as a key market and financial barrier 
according to a survey of industry professionals and scholars [7]. 

• Commonly occurring operational issues that result in low performance are identified 
[15; 16]. When controls are present to avoid low performance, (frequent) re-tuning of 
these controls is necessary over the lifetime of the project if they are not automated 
(or ‘smart’) to maintain “optimal” performance [15]. 
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• Investment at scale is available when performance can be guaranteed [2; 3].  

Section 2.0: Review technology controls literature about their impacts on energy 
savings 

• There is a general consensus in the literature that building controls can improve 
energy saving profiles of energy efficiency projects [17]. 

• “Optimal” control of building operations could save up to 60% of energy 
consumption, with most reported savings in the 10%-30% range [17]. 

• Automated building control techniques can yield actionable value by monitoring and 
correcting, in real-time, the energy performance profile of the building [18; 19]. 

• Under-adoption of whole-building automated control technologies is attributed to the 
high cost associated with whole-building deployment [19]. However, automated 
control technologies at the end-use level have become available that might overcome 
this barrier. As such, as opposed to purchasing a whole-building system at 
considerable cost, strategic deployment of control options is now possible. 

Section 3.0: Identify and characterize the energy savings guarantee setting process 

• Extant literature shows that realized savings can deviate from the guarantee. For 
example, review of a large database finds that 72% of projects experienced greater 
savings than were guaranteed by the ESCO (517 projects) – some by as much as 50% 
more [5]. 

• This deviation is partly explained by the fact that, to limit their downside risk 
exposure, ESCOs typically set the guarantee below predicted performance using 
ESCO-specific risk tolerances [20-22]. Yet, no “rule of thumb” for setting the guarantee 
is available [23]. 

• From the perspective of the ESCO, strategic guarantee placement can be modelled 
using stochastic performance profiles [23].  

• Stochastic performance profiles for hypothetical projects with and without the use of 
smart controls are used to quantify the ability of these technologies to increase the 
guarantee.  

Section 4.0: Summarize the results 

The model prepared for this report is complex. Perhaps a practical way to describe it is 
to use an example of a building whose owner is weighing energy efficiency options and 
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the possible use of technology controls. The owner is interested in investing in a project 
provided that a performance guarantee can be put in place that covers investment costs. 
Simultaneously, an ESCO is evaluating what it can guarantee. The model to represent 
this owner-ESCO decision-making process is described briefly here by using an example 
of a large office building. In Section 3.0., several building types are analyzed in order to 
demonstrate the model’s ability to examine a broad range of project types.  

The owner-ESCO decision-making process can be graphically represented in its 
hypothetical form (Figure ES 1). For a hypothetical project, Figure ES 1 shows that the 
project's savings can exceed a low guarantee but will likely fall short when a (very) high 
guarantee is used. Under a guaranteed savings structure, savings above the guarantee 
are awarded to the project host while savings that fall short of the guarantee negatively 
impact the ESCO. This is illustrated in Figure ES 1 by the green and red areas, 
respectively. From the perspective of the project host, savings that exceed the guarantee 
are welcome but, critically, these savings are not guaranteed and, as such, are not 
available to underwrite the initial investment. However, savings that fail to reach the 
level of the guarantee prompt the project host to argue for compensation that could be 
disputed by the ESCO. The project host, overall, is interested in a high guarantee.  

Surplus savings above the guarantee means that the project over-performed relative to 
the guarantee. In this case, the ESCO is not at risk of claims for compensation. While this 
sounds appealing, it also means that the project bid by the ESCO could have been more 
competitive. Insufficient savings to cover the guarantee lower the overall return on the 
project and could even represent a net-loss for the ESCO. From the perspective of the 
ESCO, this should be avoided whenever possible. As illustrated in Figure ES 1, a 
hypothetical range of possible guarantee values that are acceptable to the ESCO can be 
identified. 
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Figure ES 1 Overview of the owner-ESCO decision-making process 
regarding setting the energy savings guarantee 

For the large office a post-retrofit scenario provides an average annual consumption level 
of 24,057 GJ compared to the pre-retrofit average consumption level of 37,034 GJ – an 
average savings of about 35%. Yet, as illustrated in Figure ES 2, the probability of savings 
is such that, under highly unfavorable circumstances, the project could have annual 
performance levels that are below pre-retrofit performance.  Figure ES 2 also illustrates 
the performance profile when control technologies are installed in the project.  
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Figure ES 2 Pre-and post-retrofit energy consumption without and with 
performance controls (10,000 simulations each) for the large 
office building  

Next, the ESCO determines the placement of the energy savings guarantee. 

Based on the results reported in Figure ES 2, the ESCO can set an energy savings 
guarantee. This guarantee is dependent on the energy efficiency project profile 
introduced above and – importantly – on the ESCO’s tolerance for risk. Using the 
guarantee placement model built for this report, the cost savings profile of the 
hypothetical project yields a strategic estimate of the guarantee an ESCO might be willing 
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to provide over 20, say, 20 years. We calculate this estimate both for the scenario where 
no controls are installed and for the scenario where the project does make use of these 
advanced technologies.  Figure ES 3 shows the results for the large office building. The 
illustration shows that the ESCO, in a project without controls, would set the guarantee 
at ~$47,500. The use of controls improves the project’s profile in such a way that a 
$116,000 guarantee becomes feasible.  

 

Figure ES 3 Guarantee placement with and without controls for the large office 
building  

Part 2: Controls, Energy Efficiency Performance Insurance and the Energy Savings 
Guarantee 

Section 5.0: Interparty trust-building through the use of controls 

• The actual value of the guarantee can matter less than the client’s perception of the 
trustworthiness of the ESCO’s promise.  

• Controls can help to improve this situation by creating large amounts of 
performance data, where under-performance can be correlated to potential causes. 
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Real-time performance monitoring can shine a light on the ESCO ‘black box’ tools 
that sometimes generate mistrust by the project host. 

• Trust-building and other benefits accrue from the use of automated technology 
options, including operational and engineering risk reduction; monitoring and 
verification risk reduction; economic risk reduction; and financial risk reduction. 

• The energy savings guarantee is, effectively, a risk-transfer contract between 
ESCO and client. Other forms of financial risk mitigation are also possible.  

• We provide a preliminary discussion of financial risk mitigation in the form of 
energy efficiency performance insurance.  

• Energy efficiency insurance has been suggested as a possible financial risk 
mitigation tool in the energy efficiency retrofit sector [25; 26; 79].  

• Insurance product valuation is inherently about valuing risk. The problem of 
valuing risk reduction can be modeled by considering a hypothetical financial 
insurance instrument available to the project [27].  

• A hypothetical insurance product can be modeled using stochastic performance 
profiles [25]. 

• We explore a model proposed by Töppel &Tränkler [28].  
• By simulating many values of insured coverage, a cost curve for insurance can be 

obtained.  
• We provide a preliminary calculation of the cost of guarantee setting from the 

perspective of the ESCO. This cost calculation can be used in subsequent research 
to further define the benefit-cost ratio of controls in EPC projects.  

Conclusions 

• Tests of our multi-stage model confirm that the model captures the interlocking 
dynamics associated with energy efficiency insurance, guarantee setting, and 
performance control technology implementation. 

• Our results indicate that such technology implementation can deliver substantial 
benefits for the investor in the form of, especially, a large increase in the energy 
savings guarantee.  
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PART 1 

ENERGY SAVINGS GUARANTEE WITH AND WITHOUT 
CONTROLS 

1.0. PROBLEM: BUILDING PERFORMANCE VARIATION 

Significant growth characterizes the U.S. energy efficiency market [4; 29]. However, the 
2014 $5.3 billion energy efficiency market can be contrasted against an estimated $92 to 
$333 billion overall potential [29-31]. Nominal revenue stagnation between 2011 and 2014 
[30] adds to the impression of a seeming incapability to successfully unlock the rest of the 
market. Critically, market potential could be unlocked if investment at scale can be 
achieved by explicitly considering current barriers that deter investment and the enabling 
conditions that would make energy efficiency attractive [2; 3]. A principal barrier in this 
regard is performance and operational uncertainty [2], captured as the energy savings 
“credibility gap” or “performance gap” [11-13]. For example, financial institutions 
consider themselves consummate risk managers but are highly “uncertainty averse” 
resulting in “a lack of appetite for energy efficiency investments, low motivation for new 
entrants to offer energy efficiency finance and increased financing costs (to overly 
compensate for the unknowns)” [2]. 

The finding that financial institutions are hesitant to invest in energy efficiency due to 
their operational uncertainty is a principal motivation for this research project. As such, 
it is worthwhile to expand on the underlying dynamics. To that end, this section briefly 
evaluates: 
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• The risks in energy performance contracting (EPC), including a description of 
commonly occurring performance variation problems; and  

• Energy savings uncertainty profiles and the role of guaranteed energy savings 
agreements; 

1.1. Risks in Energy Performance Contracting (EPC) 
Inherent risks accompany energy performance contracting and clear risk allocation is 
critical to avoid dispute or litigation [6; 9; 10]. Energy savings uncertainty from the 
perspective of the investor can be attributed to various risks, including monitoring and 
verification risk, financing risk, and technology risk (see Table 1). Expected or 
experienced manifestation of these risks lead clients to indicate “worry about ESCOs’ 
guaranteed savings not being achieved, causing problem to third party financing” as a 
top concern according to Ref. [6]. In a similar vein, “ambiguity between owner and ESCO 
regarding realization of estimated savings” and “uncertainty of payments based on 
energy savings” are listed as key market and financial barriers according to a survey of 
industry professionals and scholars [7]. 

1.2. Energy Savings Uncertainty as a Result of Risk Profiles 
Conventional risk screening tools used by investors (e.g. simple payback) could 
downgrade or miss valuable investment opportunities [34-36]. As a first risk mitigation 
option, contractual agreements are used and, principally, performance contracts between 
ESCO and client can be formulated as either so-called ‘shared savings’ contracts or 
‘guaranteed savings’ contracts. 2  Shared savings contracts allow the ESCO to take a share 
of the savings above a target level and, in this model, ESCOs typically provide project 
financing [6]. Under the guaranteed savings model, the ESCO guarantees a level of 
performance sufficient to pay back installation and financing costs if proposed ECMs are 
implemented and monitored and verified according to IPMVP guidelines. When actual 
savings fall short of the guarantee, the ESCO compensates the shortfall to the client or 
otherwise makes the client whole. The ESCO does not benefit from performance levels 
that are above the guarantee. Importantly, the ESCO market now mostly uses the 
guaranteed savings model [4; 5]. 

                                                           
2 Other contractual agreement forms, such as “first out” or “chauffage”, are also available. These are not 
considered in this report.  
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Table 1   Overview of relevant risks  

CATEGORY MANIFESTATION CAUSES CONSEQUENCES MANAGEMENT 
FINANCIAL 
RISK Payment default Energy saving is not 

achieved as expected 
Inability to service loan and 
possible termination 

Guarantee on energy 
saving; performance bond 

TECHNOLOGY 
RISK 

Poor system/ 
equipment 
performance 

Design deficiency Reduction in actual energy savings Careful design; acceptance 
tests 

OPERATIONAL 
RISK 

Unexpected 
consumption pattern 

Changes in baseline 
conditions such as weather, 
operating hours, load on 
system conditions 

Change in measured energy 
savings 

Contract design, especially 
for baseline adjustments; 
M&V protocols 

Degradation of 
equipment 

Faster rate of equipment 
degradation due to, for 
instance, poor maintenance 

Consuming more energy to 
achieve same level of performance, 
resulting in reduction of energy 
savings 

Monitoring and diagnostics 

Faulty operation Improper system operation Reduction in actual energy savings 

Operation staff training; 
provision of system 
operational procedure 
guidelines;  

Frequent breakdowns Improper or lack of 
maintenance 

Reduction in profit of ESCO and 
disturbance to client Planned maintenance 

M&V RISK 

Poor data quality Low resolution of operating 
data; missing data 

Increase in uncertainty on energy 
savings calculation 

Prior agreement in the 
expected quality of data 

Modeling errors Incorrect assumptions on 
technical projects 

The model might be invalid for 
estimating baseline energy use, 
leading to disputes about actual 
energy savings 

Prior agreement on the use 
of modeling method and 
assumptions 

Inconsistency of data Improper M&V design Dispute over actual energy savings Project M&V plan design 
Imprecise /inaccurate 
metering Measurement error Increase in uncertainty in energy 

saving calculation 
Regular calibration; sub 
metering 

ECONOMIC 
RISK Fuel cost increases Electricity/gas price 

volatility Reduction in actual cost savings Hedges; baseline 
adjustment in fuel cost 

Note: selection adapted from analysis by Refs [6; 10; 32; 33].
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Under the guaranteed energy savings model, clients are typically responsible for 
obtaining financing either from internal funds or from external third-party investors (e.g. 
a bank or financial institution) [6; 37; 38]. Responsible for about 15 TWh of the 34 TWh in 
electricity savings achieved in 2012 [39], the public/institutional market sector is the 
dominant market [30]. This market segment often finances up to 100% of project costs [4]. 
The guaranteed savings model is compelling especially for public/institutional property 
owners which typically operate in a capital deficient, maintenance-deferred environment 
[40]. The guarantee, supported by a creditworthy ESCO, represents a financial 
commitment that addresses downside risk, making it easier for these property owners to 
attract the capital needed for the project. 

To limit their downside risk exposure, ESCOs typically set the guarantee below predicted 
performance [20] using ESCO-specific risk tolerances on individual energy conservation 
measures (ECMs) [21]. 3 In other words, no “rule of thumb” for setting the guarantee is 
available [23]. However, a benchmarking database of about 6,100 projects operated by 
Lawrence Berkeley Laboratory (LBNL) in partnership with the National Association for 
Energy Service Companies (NAESCO) shows realized savings often exceed from the 
guarantee in both ways, sometimes significantly (Figure 1). Discrepancies between 
predicted and actual metered building energy use found in evaluations lead us to 
examine guarantee placement by ESCOs.  For example: 

• U.S. federal level non-EPC and EPC project compliance was found to have 
insufficient realization rates [46; 47].  

• An evaluation of 8,541 buildings in Greece found that, on average, calculations 
underestimated actual EPC savings by 44% [44]. 

• Review of a NAESCO database found that 72% of projects experienced greater 
savings than were guaranteed by the ESCO (517 projects), some by as much as 50% 
more [5]. 

                                                           
3 To further limit downside risk, the ESCO is less likely to recommend high-impact, high-cost technologies, 
leading the guaranteed savings approach to relatively safe and often less aggressive ambitions [40; 41]. This 
is partly due to the fact that the performance contractor is compensated based on the value of capital 
acquisition – thus linking profits to size of the expenditure – as opposed to a direct connection to energy 
savings [40]. ESCOs, knowing that especially the governmental sector can access low-cost capital via tax-
exempt municipal lease or bonds, increasingly focus on capital improvement and project size as a result 
[40].  
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• Analysis of a U.S. Department of Energy (DOE) Super Energy Savings 
Performance Contract (Super ESPC) Program found that, for the aggregate of 102 
projects, the value of annual cost savings exceeded the cost savings guarantee by 
19% [48]. 

 

Figure 1 Realized energy savings against guarantee at public properties (1990-
2017) 

Note: Presented here is the 20th percentile (lower end), median (black 
horizontal bar), and the 80th percentile (high end) (n = 1,652).  Source: 
https://eprojectbuilder.lbl.gov/home/#/benchmark. 

On the other hand, researchers report that potential clients of energy performance 
contracting express reservations about the guarantees. Specifically, potential clients 
worry that performance contracts may under-perform against guarantee, leading to what 
has been described as a “credibility gap” [11; 13; 42-45]. 

In this regard, performance contracts raise conflicting concerns: over-performance or 
under-performance of the guarantee? Our research question is whether risk management 
under a guaranteed savings contract can be improved so as to reduce ESCO tendencies 
to shift project risks to other parties; and can we manage risk around the guarantee in a 

https://eprojectbuilder.lbl.gov/home/#/benchmark
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manner that reduces the “credibility gap” harbored by potential clients? Our focus is on 
“smart controls” as one tool to address these twin problems. 

Important elements regarding energy savings guarantees are: 

• Contractors will not typically assume risks that they cannot manage in a direct 
fashion; 

• Savings guarantees shift unbounded risks (any risks not captured in the 
guarantee) to other parties; 

• Savings guarantees are usually well below the achievable savings in order to 
build-in risk protection for the ESCO; 

• Guarantees always carry a cost. 
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2.0. BUILDING CONTROLS FOR AUTOMATED PERFORMANCE 
CONTROL  

Inadequate building operations due to the convergence of the risks listed in the table 
above can result in inefficient performance both in terms of excess energy consumption 
but also in terms of discomfort to the buildings’ inhabitants. Commonly occurring 
operational problems identified in the literature include: 

• Continued system operation (such as heating, ventilation, and air conditioning 
(HVAC), exhaust fans, or lighting) beyond necessary hours; 

• Improper technology set points (e.g. thermostat set points); and 
• Inadequate economizer operations [15-17]. 

Implementation of building controls could therefore help prevent significant energy 
waste. For instance, an assessment by the U.S. Energy Information Administration (EIA) 
documented in 2012 that over 85% of commercial buildings in the United States have 
inadequate control infrastructure in place [49]. It has been broadly established that 
advanced control measures can improve performance and save 10%-30% of energy 
consumption [17; 50-53]. For instance, for lighting, a combination of improved lighting 
devices and controls can reduce commercial lighting energy use by 81% [54]. A meta-
analysis looking at the savings generated by lighting controls in commercial buildings by 
isolating the control function contribution found savings ranging from 28%-40% with 
combined operation of sophisticated controls achieving higher saving rates [55].  

An emerging paradigm in building controls is the introduction of automated 
performance control technology options, that can measure and control building 
operations in real-time [19; 56-58]. As a general definition, technologies within this 
paradigm rely on “web-based analysis software, data acquisition hardware, and 
communication systems […] to store, analyze, and display whole-building, system-level, 
or equipment-level energy use” and, at minimum, provide hourly but typically provide 
sub-hourly interval meter data with graphical and analytical capabilities and assessment 
[18; 19].  

The use of such techniques is currently largely in the pilot stage and used primarily for 
program targeting and opportunity identification [57]. The technology platforms are 
mostly used in commercial and industrial applications [56; 57; 59-62] but “cloud 
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computing platform[s] for real-time energy performance [monitoring and verification 
are] applicable to any industry and energy conservation measure” [63].  

Combined, the suite of technologies that makes up the automated performance control 
paradigm can, thus, yield actionable value in EPC projects by monitoring and correcting 
real-time performance [18; 19]. Clients that have used such technology suites indicate a 
high level of satisfaction: 19 out of 21 cases evaluated reported automated measurement, 
verification, and control as critical in achieving energy savings [19]. A 2018 market 
analysis by a leading industry actor found that building control improvements are “the 
most popular investment for the next 12 months among U.S. organizations” as 68% of 
survey respondents indicated plans to invest in (additional) controls [70]. A 2014 estimate 
suggested the intelligent building control market could reach an annual $59 billion (in 
2009 dollars) by 2019 [71]. 

Whole-building energy management systems integrate a variety of end-uses. A survey of 
zero net-energy buildings that use building controls found that 91% of the commercial 
buildings surveyed relied on control systems that integrate multiple end-uses with 67% 
using a fully integrated controls architecture capable of controlling all end-uses centrally 
and automatically [72]. However, it is important to emphasize that even these systems 
often still rely on the occupant for some part of the successful operation of the controls: 
74% of the buildings surveyed have integrated controls system sequences that are not 
fully responsible for driving performance, relying instead on the occupant [72]. Under 
these cases, persistence of savings is uncertain and “optimal” operation likely requires 
frequent re-tuning [15]. 

However, relative to the potential, significant under-adoption of the technology suites 
can be observed and this is often attributed to the high cost associated with whole-
building applications [19]. The suite of technologies is typically deployed as “software as 
a service” (so-called SaaS) offerings, delivering capabilities on a subscription-type basis 
[19]. In other words, up-front expenditures for items such as licensing and system 
configuration are accompanied by recurring subscription fees which spread out the cost 
of the entire system over its lifetime [19]. Nevertheless, up-front cost estimates range from 
$10 to $3,400 per “point” with most in the $100 to $500 per point range  [19]. In addition, 
the recurring costs range from $5 to $3,100 per point [19]. Put together, 5-year ownership 
estimates ranged from $140 to $16,000 per point [19]. A “point” is a single datum that is 
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trended, stored, and available for normalization and data analysis across use cases and 
comprehensive, whole-building systems can have thousands of points. For example, a 
use cases overview of a major controls company shows how a project involving three 
federal office buildings contained 18,000 points [73]. Therefore, at the median 5-year 
ownership costs found by Ref [19] of $1,800 per point, a fully integrated energy 
management system could cost as much as $32 million. The wide range in costs is 
illustrative of the relative immaturity of the market but also suggests significantly higher 
costs for more advanced systems and the use of different pricing models.  

For these reasons, it is worthwhile to consider partial integration using separate control 
technology options (i.e. not part of a whole-building systems package). Acquiring only 
the level of controls necessary to ensure limited performance variation represents a 
strategic approach to building performance that might prove sufficient to boost investor 
and client confidence. Versions of partial integration deployment strategies can be 
observed in the market: the survey of zero net-energy buildings found that partial 
integration of end-uses occurred in 24% of the buildings while 9% had no whole-building 
controls architecture at all but, instead used controls only at the end-use level [72]. At this 
level of operation, there is an expectation of significant cost reduction to the point where 
control technology cost can be brought down from an estimated $150-$300 per node to 
$1-$10 per node using low-cost, self-operated, and wirelessly connected end-use level 
devices [74]. 
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3.0. ENERGY SAVINGS GUARANTEE SETTING PROCESS 

So far, we’ve established that the energy efficiency savings performance can be uncertain. 
One way to consider this uncertainty is to reflect on energy savings performance as a 
stochastic distribution of possible savings. The savings with highest probability can be 
seen as the expected performance level. Yet, deviation from this expected performance is 
what prevents project confidence.  

A key way the energy efficiency retrofit sector attempts to limit the influence of this 
uncertain performance profile is to establish energy savings guarantees. In this case, the 
ESCO guarantees a certain level of performance and, if the project fails to materialize this 
level of performance (i.e. if realized savings are below the guarantee), the ESCO is 
responsible to either a) improve the performance of the project by deploying additional 
effort or b) provide other means of compensation. Effectively, energy savings guarantees 
are contractual risk transfer agreements provided by the ESCO that mitigate the risk 
surrounding lower-than-expected energy bill savings. The guarantees bolster the client’s 
confidence in the project’s ability to deliver actual energy bill savings.  

However, as documented briefly above, ESCOs seek to limit their own downside risk 
exposure as well. This is done by setting the guarantee below predicted performance [20] 
using ESCO-specific risk tolerances on individual energy conservation measures (ECMs) 
[21]. In other words, no “rule of thumb” for setting the guarantee is available [23]. Instead, 
ESCOs deploy in-house models to strategically determine the placement of the energy 
savings guarantee. A broad distribution of energy savings – i.e. a higher probability for 
adverse circumstances – presents a higher risk for the ESCO that performance levels will 
be below the guarantee (e.g. [75]) and, as such, all else being equal, is accompanied by a 
lower guarantee. Relevant possible adverse circumstances are listed above in Table 1.  

3.1. Energy Savings Guarantee Setting Model 
In this research, we evaluate an energy efficiency retrofit project where the ESCO is 
sufficiently confident in the project’s ability to save energy that it will provide an energy 
savings guarantee. Nevertheless, as mentioned above, we model a risk-averse ESCO by 
using a low risk tolerance. In addition, funding sources for energy saving projects can 
come from a variety of resources. Here, the project is financed via third-party sources – 
such as, for instance, the capital markets – and this debt is paid back through the cash 
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flow from the guaranteed energy savings (i.e. the project is “self-financing”). As such, 
several important dimensions stand out for the ESCO when considering placement of the 
guarantee: 

• Cash flow resulting from the project: The cash flow of the project is determined 
by the realized energy bill savings which is a product of the energy price and the 
amount of energy units saved per year by the project relative to a baseline energy 
bill before the retrofit took place. These two sub-dimensions of energy price and 
energy savings can be identified separately: 

o Energy Price: We evaluate electricity and natural gas prices over time. 
Electricity prices are assumed to follow a contractually fixed trajectory 
starting at a current electricity price and escalating annually. Natural gas 
prices are determined stochastically by allowing a drift coefficient and 
volatility coefficient to set the trajectory (see Ref. [23]). 

o Profile of realized saving: The realized savings are determined 
stochastically resulting in a distribution that approximates a normal 
distribution. Following Deng et al. [23], two assumptions underpin the 
profile of realized savings. First, we assume that the estimate of expected 
annual savings is guided by the system engineers’ best knowledge. Second, 
we assume that the volatility effect of realized savings is annually 
independent.  

• Under- or over-performance of guarantee decisions: various contractual forms 
are available to decide on the profit (or loss) sharing structure. Under the assumed 
conditions of the energy efficiency project, under-performance is entirely on the 
shoulders of the ESCO while over-performance benefits entirely the client. In other 
words, there is no sharing of the profit if savings exceed the guarantee and the 
ESCO will compensate any shortfall.  

• Risk tolerance: All risk-transfer contracts – of which energy savings guarantee is 
one – are affected by the same underlying risky energy bill savings and costs (see 
“cash flow resulting from the project” above). Therefore, the financial risk 
experienced by the ESCO, client, and third-party investor are subject to the 
specification of the contract terms. Following Töppel &Tränkler  [28], we assume 
that the parties involved treat the contract options with an equivalence-based 
perspective: decisions are made based on the expected returns and the risk profile; 
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no preference for a particular risk-transfer contract approach is embedded into the 
modeling. Nevertheless, the investor, ESCO, and client are positioned as risk-
averse: if premium levels to reduce risk are the same, parties will select the 
premium option that reduces the most risk. Risk is measured based on standard 
deviation and “value-at-risk” [76]. 

The model to determine the energy savings guarantee is described in detail in Appendix 
A. In essence, the strategic guarantee is, as discussed in Appendix A, the highest possible 
guarantee where the ESCO can reasonably expect the savings to be equal to or larger than 
the guarantee. This can be graphically represented. For the hypothetical example (see 
Figure 2), we assume 3 performance variables with different variations (for example, 
advanced lighting, zonal, programmable thermostats, and improved cooling 
technology). The hypothetical example shows the results of four simulations to illustrate 
the stochastic character of performance. As can be visually approximated in Figure 2 
(actual analysis below shows exact numbers), the last value where DE,total(G(t),β) = 0 
(see Appendix A) is roughly under a scenario where the ESCO guarantees annual energy 
savings worth $50,000. 
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Figure 2 Hypothetical distribution of model simulation results for four 
evaluations 

While only four simulations are included in Figure 2, the analysis performed in Section 4 
simulates tens of thousands of simulated outcomes. This generates a challenge: when 
simulating such a large number, there will undoubtedly be a few simulations with 
exceedingly low performance and, hence, very low DE,total(G(t),β) = 0 values. This is 
where the ESCO’s risk tolerance becomes important. For example, hypothetically, the 
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ESCO can be comfortable with a risk tolerance where 95% or 99% of 10,000 simulations 
show a present sum profit difference  DE,total(G(t),β) = 0, accepting a (small) risk that the 
performance ends up being below the guaranteed energy savings. In our model, we’ve 
inserted a final step that takes the percentile values of each guarantee level G(t) to model 
this risk tolerance. We use a risk tolerance of 95% in our analysis. 

3.2. Software stack 
The primary software element is the Department of Energy’s (DOE) Energy Plus 
software: a leading building energy simulation tool in the energy efficiency industry [35; 
80; 81]. Advantages of Energy Plus include first-principles, text input-output workflow 
that can be automated [82] and availability of benchmark building model databases (16 
building types across 16 locations and three construction periods) [83; 84]. Within Energy 
Plus, we made use of DOE’s prototypical commercial building models that describe 
typical building layout, geometry, energy consumption, etc. for buildings in the 
Delaware region constructed before 1980 [84; 85]. 

Parametric evaluation of the building models was conducted using jEPlus software 
(version 1.7.2), an open-source parametric analysis tool specifically designed for Energy 
Plus [86] that provides flexible and structural analysis opportunities and smooth 
operations [87]. The tool has been used in similar investigations to determine sensitivity 
or optimize energy systems [88-91]. This set-up enables Monte Carlo analysis for risk 
estimation and management of, among others, renewable energy projects, system 
planning, or system optimization [92-98] and for energy efficiency projects in general and 
M&V efforts specifically [22; 37; 88]. Latin Hypercube Sampling (LHS) was used to run 
10,000 simulations per jEPlus model run. LHS is a powerful tool that enables efficient 
stratification across the uncertain performance range [99]. This parametric evaluation 
takes the possible performance levels described in the previous section and models their 
effect on overall energy consumption and resulting energy and cost savings.  

Outputs of the jEPlus modeling tool are then inserted into the calculation models 
introduced in the previous sections.  

3.3. Prototypical Building Selection 
Within Energy Plus, we made use of DOE’s prototypical commercial building models 
that describe typical building layout, geometry, energy consumption, etc. for buildings 
in the Delaware region constructed before 1980 [84; 85]. The energy performance of these 
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buildings is simulated in Energy Plus version 8.6.0. Six commercial benchmark building 
models are evaluated in the 2018-2019 study. These buildings were selected as they reflect 
a possible building portfolio operated by the public sector, the dominant user currently 
of energy savings guarantees (see earlier sections): 

Large Office:  The large office benchmark building is a 46,320.38 square meter, 12-story 
office building (including basement) with total annual baseline consumption of 26,358.15 
GJ of electricity and 7,265.8 GJ of natural gas to fulfill its end-use functions or 725.9 
MJ/m2. Notably, over half of the building’s energy consumption serves interior lighting 
(9,422.03 GJ or 28.1%) or interior equipment (8,384 GJ or 25.2%). Heating is third most 
responsible for annual energy consumption (7,265 GJ or 21.6%). 

Medium Office: The medium office benchmark building is a 4,982 square meter, 4-story 
office building (including basement) with total annual baseline consumption of 3,438.2 
GJ of electricity and 534.4 GJ of natural gas to fulfill its end-use functions or 797 MJ/m2. 
Notably, over half of the building’s energy consumption serves interior equipment (1,066 
GJ or 26.6%) or interior lighting (1,231 GJ or 31%). Fans represent 708 GJ of annual energy 
consumption or about 17.7%). Heating is fourth most responsible for annual energy 
consumption (534.4 GJ or 13.5%) followed closely by exterior lighting (280 GJ or 7%).  

Small Office: The small office benchmark building is a 511.16 square meter, 1-story office 
building with total annual baseline consumption of 363.33 GJ of electricity and 156.43 GJ 
of natural gas to fulfill its end-use functions or 1,016.79 MJ/m2. Notably, most of the 
building energy’s consumption is accounted for by heating (30.14%), interior lighting 
(19.7%), interior equipment (16.8%) and fans (16.3%).  

Hospital: The hospital benchmark building is a 22,422.24 square meter, five-story 
hospital building with total annual baseline consumption of 33,182 GJ of electricity and 
15,000 GJ of natural gas. At 24.4% of the total annual consumption, heating represents the 
key energy consuming end-use function, followed by interior lighting (18.2%), cooling 
(14.8%), and interior equipment (14.2%).  

Primary School: The primary school benchmark building is a 6,871 square meter, single-
floor school building with total annual baseline consumption of 4,108 GJ of electricity 
consumption and 2,454 GJ of natural gas use. Heating (31.8%) is followed by interior 
lighting (27.8%) as main energy use functions in the building. Interior equipment (22.2%) 
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and cooling (9.8%) are other key end-use functions in terms of their contribution to 
annual energy consumption. 

Secondary School: The secondary school benchmark building is a two-story, 19,592 
square meter building with total annual baseline consumption of 10,380.04 GJ in 
electricity consumption and 7,772.15 in natural gas consumption. Like with several of the 
other benchmark buildings, heating represents the main end-use function in terms of 
energy consumption (38.4%), followed by interior lighting (22.5%), interior equipment 
(12.5%), and fans (10.1%). A brief overview of several key metrics is provided in Table 2 
for each of the six benchmark building models tested in this analysis.  

Table 2  Key metrics of the benchmark building models 

Building GJ /yr MJ/m2 
Electricity (MJ/m2) NG (MJ/m2) 

Lighting HVAC Other HVAC Other Source  Site 
Large 
office 102,191 33,624 725.9 203.41 143.72 221.91 156.86 0 

Medium 
office 12,879 3,972 797.4 247.15 228.9 214.07 107.27 0 

Small 
office 1,470 519 1016.79 285.79 253.4 171.62 306.04 0 

Hospital 136,523 49,540 2,209.45 388.11 680.25 411.52 668.98 60.58 
Primary 
school 17,373 6,563 955.28 293.42 115.41 189.17 323.17 34.11 

Secondary 
school 45,605 18,152 926.5 226.63 179.77 123.41 378.66 18.04 

 

3.4. ECM Selection, Cost, and Control 
Possible ECMs were identified using research results from Lawrence Berkeley National 
Laboratory (LBNL), specifically the Commercial Building Energy Saver (CBES) project 
(http://cbes.lbl.gov/ and Refs [100-102]). This ECM selection was further supported by 
data from the Building Component Library and several articles using a similar 
methodological approach [21; 82; 88; 103]. Finally, our research team had access to 
guaranteed energy savings agreements (GESAs) provided by ESCOs for other projects in 
Delaware and across the United States. Data from these GESAs was used to complete 
ECM profile selection by looking at buildings in those projects that share similarity with 
the benchmark buildings. The ECMs used in the remainder of the analysis are briefly 

http://cbes.lbl.gov/
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summarized in Table 3. Critically, based on a review of existing control literature, the 
selected ECMs listed in Table 3 can be accompanied with a control function. 

Table 3   ECMs used in the analysis 

# ECM Main parameter in E+ Unit 
1 Replace lighting with LED 

upgrade Lighting load W/m2 

2 Appliance upgrade Plug load W/m2 
3 Change zone thermostat set-point Set-point in Celsius C 
4 Install high-efficiency chillers Reference COP fraction 
5 Install high-efficiency boiler Nominal thermal efficiency Fraction 
6 Install high-efficiency fans Fan total efficiency Fraction 
7 Install high-efficiency water heater Heater thermal efficiency Fraction 

Large Office: Application of the suite of ECMs identified in Table 3 and Appendix 3 yield 
a post-retrofit performance profile with, on average, annual consumption levels of 
16,629.48 GJ and 5,515.283 GJ for electricity and natural gas consumption, respectively – 
a reduction in energy use of approx. 34%. In particular, the electricity intensity for 
lighting has been reduced from 203.41 MJ/m2 to 93.94 MJ/m2 – a reduction of over 53%. 

Medium Office: Post-retrofit performance profile with, on average, annual consumption 
levels of 2,187.64 GJ and 700.27 GJ for electricity and natural gas consumption, 
respectively – a reduction in energy use of 27%. 

Small Office: The ECMs together reduce electricity use to 223.41 GJ and natural gas 
consumption to 163.86 GJ. This is equivalent to an overall, facility-wide energy 
consumption reduction of 25%.  

Hospital: The applied measures combined reduce, on average, the use electricity to 
22,522 GJ and 12,478.4 GJ for natural gas. Accomplishing a reduction in energy use of 
over 29%. 

Primary School: After application of the ECMs, the total use of electricity and natural gas 
decreased to 2,429.86 GJ and 1,925.25 GJ respectively. The implemented ECMs achieved 
therefore, a total consumption reduction of 33.6%.  

Secondary School: Post-retrofit performance reduced the use of electricity to 6,366.22 GJ 
and the use of natural gas to 7,064.48 GJ. The overall consumption of electricity was 
decreased by 26%.  
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Table 4  Key metrics of the post-retrofit benchmark building models 

Building GJ /yr MJ/m2 
Electricity (MJ/m2) NG (MJ/m2) 

Lighting HVAC Other HVAC Other Source  Site 
Large 
office 65,490 22,145 478.09 93.94 88.41 176.66 119.08 0.0 

Medium 
office 8,588 2,888 579.66 129.21 141.08 168.82 140.56 0.0 

Small 
office 977.82 387.26 757.62 151.59 156.75 128.72 320.57 0.0 

Hospital 94,166 35,000 1,561 161.0 509.91 333.55 495.94 60.58 
Primary 
school 10,791 4,355 633.84 132.06 74.94 146.64 246.09 34.11 

Secondary 
school 30,479 13,430 685.51 103.94 123.96 97.04 342.54 18.04 

 
3.4.1. ECM 1: Replace Lighting with LED Upgrade 

Around 18% of U.S. electricity consumption (~6% of all U.S. electricity consumption) is 
used to provide indoor and outdoor lighting [54]. (Interaction effects between lighting 
(artificial and daylighting) and heating and cooling loads are also important to 
emphasize. These interactive effects are modeled by EnergyPlus software).  The 2017 U.S. 
lighting market characterization report by the DOE shows that, in 2015,  the residential 
sector accounts for 71% of all lighting installations (6.2 billion lights) followed by the 
commercial buildings sector at 24% (2.1 billion lighting installations), the outdoor sector 
(3%, 258 million) and the industrial sector (2%, 172 million) [104]. However, the 
commercial sector is responsible for about 40% of annual electricity use dedicated to 
lighting in the U.S. – this is due to the higher average daily operating hours (see Table 5).  

Table 5  Overview of U.S. lighting market in 2015 

Sector Total lamps and 
luminaires 

Average daily 
operating 

hours 

Average Wattage 
per lamp or 
luminaire 

Annual 
electricity use 

(TWh) 
Residential 6,218,969,000 1.9 38 149 
Commercial 2,076,460,000 8.9 36 237 
Outdoor 257,546,000 13.4 166 202 
Industrial 171,682,000 12.1 65 53 
Total 8,724,657,000 4.1 42 641 

Source: [104] 
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Our focus here is on the buildings commonly found in the commercial sector as operated 
by the public sector (i.e. office spaces, schools, hospitals). The commercial sector is 
shifting from T12 to higher-efficiency fluorescent lamps and LED lights [104]. Indeed, 
LED technology is seen as the most likely technology to dominate the sector moving 
forward [54]. However, linear fluorescent remains the predominant lighting technology 
(78% of lighting) in this sector and only about 10% of the sector’s lighting is provided 
through LED technology [104]. Average lighting wattage of linear fluorescent lighting 
across the various building types of the commercial sector is estimated at 34 Watts while 
LED lighting average wattage is estimated at 19 Watts – a reduction of around 45% in 
wattage [104]. Best-in-class LED technology can deliver even higher energy savings – 
these savings remain even when comparing it to best-in-class linear fluorescent lighting 
[105].  

Lighting efficiency is expressed in lumens per watt (lm/W) and laboratory LED devices 
have demonstrated efficiencies approaching 300 lm/W [54]. The most efficient 
commercial products today have efficiencies between 120 and 160 lm/W [54]. In addition, 
LED technology is accompanied by features typically unavailable in other technology 
options while retaining a high level of efficacy (e.g. spectral control, intensity control, and 
optical distribution control) [105]. Following the Commercial Building Energy Saver 
(CBES) Project (http://cbes.lbl.gov/ and Refs [100-102]), we assume ECM 1 can lower 
indoor lighting consumption in the large office benchmark to 6.46 W/sq. m.  

The cost of LED products has rapidly decreased [106]. For example, a 2017 research plan 
by DOE documents the price trend of the technology (Figure 3). The price estimates 
documented in Figure 3 are used in this analysis and represent typical retail prices for 
LED packages purchased in quantities of 1,000 from major commercial distributors [105]. 
Using price point estimates for 2020 for cool white LED packages at 218 lumens per Watt 
and $0.45/kilolumen and using a 6.46 W/square meter application for the large office’s 
46,320 square meters, yields a $0.63/square meter cost for ECM 1 in the large office. Using 
the same calculation for the other benchmark buildings yields similar figures (Table 6).  

http://cbes.lbl.gov/
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Figure 3 Price and quality improvement of LED technologies 

Source: [105] 
Table 6 Cost per square meter for ECM 1: LED lighting 

Building 
Benchmark Square meters* 

Application 
level (W per 

sq. meter) 

Cost ($/sq. 
meter) 

ECM Cost 
($) 

Small office 511 7.79 $0.76 $391 
Medium office 4,982 6.76 $0.66 $3,303 
Large office 46,320 6.46 $0.63 $29,354 
Hospital 22,422 Various Various $9,695 
Primary school 6,871 Various Various $5,399 
Secondary school 19,592 Various Various $11,592 

* Note: for several buildings, only a selection of the square meters were included in the ECM. For 
example, the hospital building benchmark has highly specific rooms (e.g. emergency rooms, 
operating rooms) that are not available for retrofit. The ECM cost calculation is only for those 
rooms where the lights were indeed retrofitted.  
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In terms of performance variation controls, LED technology stands out as the technology 
enables a “whole new lighting system paradigm by the broad transition of lighting 
infrastructure to inherently controllable [solid state lighting] systems” [105]. Yet, despite 
this significant opportunity and the existing availability of lighting controls, the 
deployment of controls has so far been limited (Table 7). In fact, the majority of buildings, 
according to Ref [105], have no lighting controls at all. LEDs are “poised to be the catalyst 
that unlocks the energy savings potential of lighting controls due to their unprecedented 
controllability and increasing degrees of automated configuration” [105]. This is another 
reason to select ECM 1: LED lighting. Lighting control systems that can leverage 
occupancy sensing, daylight harvesting, personal area controls, etc. can enable energy 
savings of 20%-60% (depending on use case) [17; 51; 55; 107-109]. In addition to the 
sensors and controls listed in Table 7 (occupancy sensors, daylight sensors, etc.) which 
are relatively well understood, novel control applications such as presence detectors 
(video-based occupancy sensors), air quality sensors, Wi-Fi, Bluetooth, or temperature 
sensors are expected to be added to the control function spectrum. 

Table 7 Installed stock penetration rate of lighting controls in 
buildings and outdoor lighting applications 

Installed stock penetration (%) Commercial Residential Industrial Outdoor 
None 68% 86% 94% 41% 
Dimmer 3% 11% 4% <1% 
Daylighting <1% <1% <1% 39% 
Occupancy sensor 6% <1% 2% <1% 
Timer 4% <1% <1% 20% 
Energy management system 15% <1% <1% <1% 
Multi 4% <1% <1% <1% 
Connected <1% <1% <1% <1% 

Source: [105]. 

3.4.2. ECM 2: Appliance Upgrade 
The category of “plug loads” represents all appliances within a building. As such, it is an 
inherently nebulous category, including many different types of devices such as 
computers, vending machines, water coolers, phones, etc. 4  Plug loads account for 
approximately 12% of total energy consumption in all U.S. office buildings according to 

                                                           
4 No consistent definition of the concept of “plug loads” appears to be available. A study into the topic found that 
other terms for similar definitional boundaries as “plug loads” are “miscellaneous equipment”, “process loads”, 
“receptacle loads”, “office equipment”, or “miscellaneous electronic loads” [110] 
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the Commercial Buildings Energy Consumption (CBECS) reports published by the U.S. 
Energy Information Administration. In California, plug loads represent about 18% of 
total electricity consumption in office buildings [110]. A U.S. Department of Energy 
Building Technologies Program report published in 2010 estimated that so-called “plug 
and process loads” accounted for about 33% of total U.S. commercial building electricity 
use [111]. In addition, the relative importance of “plug loads” in energy efficiency projects 
is expected to increase as a) energy efficiency efforts have reduced the relative importance 
of other loads such as lighting and b) office equipment energy consumption is expected 
to rise over time [112]. 

A study into the power consumption from plug loads per square meter (the metric used 
in our EnergyPlus modeling) found that for a certification for major renovation (“LEED-
NC”), median plug load power intensity was 10.8 W/m2 while average plug load power 
intensity was estimated at 4.0 W/m2 [110]. These numbers are similar to our modeling 
efforts for plug loads documented below.  

An important realization, like with lighting, is that office workspace plug load energy 
consumption is “strongly linked to occupancy” [112](see also Refs. [113; 114]). An 
analysis of 137 plug load functions in a California office found that desktop computers 
consume most power per person and demonstrate the largest fluctuations in power 
consumptions [112]. The analysis furthermore found that office occupants are more likely 
to turn their plug load equipment off right before a long break than they are to do so 
overnight during the week [112]. Similarly, a study that reviewed the operation of ten 
offices found that over 75% of the plug-in equipment electricity consumption took place 
during unoccupied periods [115]. The result is that office plug load equipment is often 
unnecessarily on (overnight), wasting energy.  

(Advanced) plug load control refers to control technology at the device-level that can 
control the performance of plug loads especially when they are not in use. 
Implementation of appliance control strategies demonstrate realized savings. For 
example, an appliance-based home performance control strategy has been shown to yield 
energy savings of 5%-16%, cost reduction of 10%-24%, and peak reduction of 38%-53% 
[116]. Examples of the type of intervention strategy include [110-112; 117]:  

• smart (e.g. load sensing) power strips for office equipment;  
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• occupancy-based sensors for vending machines;  
• time switches for water coolers; 
• adjust power management savings to reduce energy use during non-working 

hours; 
• control plug loads remotely; and 
• wire plug loads on same circuit.  

ECM cost data on plug load energy efficiency improvement is provided by CityBES.org 
[118; 119] and sets the intervention price at $0.491 per square foot (~$5.29/square meter). 
The costs are reported for each benchmark building in Table 8. 

Table 8  Cost per square meter for ECM 2: Plug Loads 

Building Benchmark Square meters Cost ($/sq. meter) ECM Cost ($) 
Small office 511 

$5.29 

$2,701 
Medium office 4,982 $26,330 
Large office 46,320 $244,805 
Hospital 22,422 $118,502 
Primary school 6,871 $36,314 
Secondary school 19,592 $103,545 

 
3.4.3. ECM 3: Change Zone Thermostat Set-Point 

Our third ECM changes zone thermostat set-points by widening the thermostat 
deadband and modifying the night setback. Widening of the thermostat deadband – the 
range of temperatures where no heating or cooling is required – avoids frequent 
switching from heating to cooling, saves energy by lowering effective heating and raising 
the effective cooling setpoint [117]. A study on the topic found that increasing the cooling 
setpoint for their case study examples by 5 °F reduced cooling energy on average by 29% 
[120]. Similarly, reducing the heating setpoint 2 °F reduced heating energy by 34% [120]. 
Another study found energy savings ranging up to 60% without compromising thermal 
comfort to the occupants of the buildings [121]. These findings, however, depend heavily 
on the climatic conditions of the location in question.  

Controlled operation of zone thermostats can be performed in a variety of ways. 
Conventional building control strategies are inefficient [122] and simple programmable 
thermostats appear to be insufficient to realize the expected energy savings as well [123]. 
Now, the industry is turning to “smart” thermostats that can incorporate multiple 
features such as web-based or smart-phone user interfaces, energy-use feedback, 
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networked control of multiple zones, occupancy-sensing, learning, fault detection, 
diagnostics of operations, and demand response [123]. Occupancy-responsive 
thermostats are one option currently available on the market that can respond to their 
environment. A study into the performance of such occupancy-responsive, learning 
thermostats found that they reduced energy consumption by about 9% during periods of 
regular use of the building in question and about 20%-30% during prolonged periods of 
low occupancy (for example, a vacation period for a school) [123]. Similarly, the 
deadband widening control intervention tested by PNNL found 8.1%-15.6% in annual 
site energy savings for a variety of building types [117]. The PNNL team also tested an 
occupancy-based thermostat control intervention in the large hotel benchmark building 
and found a reduction of about 3.3% in annual site energy consumption [117]. A well-
insulated space in the heating season can save about 3%-10% with an occupancy-based 
thermostat control strategy according to another study [124].  

Costs for this ECM, without controls, are relatively low [119] as it is a thermostat setting 
modification rather than equipment replacement. CityBES database reports a unit cost of 
$49.10 for each thermostat. When adding control functions (e.g. occupancy-based 
thermostat-level sensors), new equipment needs to be installed which comes at higher 
cost.   

3.4.4. ECM 4, 5, and 6: Install High-Efficiency HVAC Equipment 
(Chiller, Boiler, Fans) 

Thermostats form one technology component in the heating, ventilation, and air 
conditioning (HVAC) category. Several other technology components are also replaced 
in the hypothetical energy efficiency project: chillers, boilers, and fans. 

ECM 4 is an intervention where the existing chiller is replaced with a high-efficiency 
version. Important considerations in this regard are the type and size of the chiller that is 
being replaced. These considerations influence the cost profile of the ECM and its control 
options, the efficiency range of the equipment, and its operations in the benchmark 
building model. HVAC equipment sizing for all reference building models is determined 
from design day runs by EnergyPlus with a specified sizing factor [85]. The large office 
comes with two 2 air-cooled electric chillers which are both replaced for high-efficiency 
chiller equipment. The associated ECM cost data is represented in $/ton of refrigeration 
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(Table 9). At $439.48/ton5, replacement of the 2 air-cooled electric chillers in the large 
office (at ~560 tons each) comes down to ~$491,935. This $/ton data point is consistent 
with a market survey performed by E Source which estimates air-cooled chillers >= 150 
tons at $350-$500/ton [125]. The other benchmark buildings are represented in Table 9. 

Chiller controls can come in a variety of configurations. Chiller sequencing control, for 
instance, enables optimization of performance across multiple chillers while retaining 
indoor thermal comfort. For example, when making use of the complementarity across 
multiple load indicators, the performance robustness of chillers can be improved [126]. 
Electricity load savings can be extracted with smart control strategies [127; 128]. A control 
strategy focusing on morning start periods, for instance, found energy savings on the 
order of 50% during that period (4.5% of total A/C system consumption) [128]. 

Table 9 Overview of building benchmark cooling equipment before and 
after retrofit (ECM 4) 

Building 

Chiller Capacity 

Pre-
Retrofit 

Efficiency 
Retrofit 

Cost 

Post-
Retrofit 

Efficiency 
Value 

ECM 
Cost ($) 

Large Office 2 air-cooled electric 
chillers at 
1,968,310.37 W or 
~560 tons (rounded 
up) each 

5.11 439.48 
$/Ton 6.274 $491,935 

Medium Office Not Applicable 
Small Office Not Applicable 
Primary School Not Applicable 
Secondary School Not Applicable 
Hospital 1 air-cooled electric 

chillers at 3,450,464 
W or ~980 tons 
(rounded) 

5.11 428.64 
$/Ton 6.274 $420,548 

There are approximately 120,000 commercial boilers in the U.S. of which about 79,000 are 
gas-fired units under 10,000 MBH [129; 130]. 6 Combined, commercial boiler systems in 
the United States use approx. 1,040 trillion BTUs of natural gas annually of which 709 
trillion BTUs are used to heat 20 billion square feet of commercial floor space according 

                                                           
5 A “ton of refrigeration” is defined as 1 short ton ice melted in 24 hours. Approximately 3,504 W or 12,000 Btus 
per hour.  
6 MBH is a unit commonly used when referring to boiler capacity and one MBH represents 1,000 BTU/hr. 
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to a 2011 report [129]. This comes down to around 51% of total natural gas expenditures 
for non-mall commercial buildings [129]. Classification of boilers takes many forms but 
both ASHRAE and FEMP separate between “small” commercial boilers (those between 
300,000 BTU/hr and 2.5 million BTU/hr) and “large” commercial boilers (>2.5 million 
BTU/hr) [129].  

Energy efficiency upgrades of boilers before end-of-life can deliver significant energy 
savings but also come at high capital costs [129]. An important consideration in this 
regard is that commercial boilers have the longest lifetime of all major commercial HVAC 
technologies, estimated between 24 and 35 years [129]. Payback times for boiler 
replacement, as such, can be extended further out than for other ECMs. For the purposes 
of this project, ECM 5 focuses on the boiler in the facilities in question. For the large office, 
the design size nominal capacity in the large office building is ~3,072,498.94 W / ~10,484 
MBH with a flow rate of 0.037743 m3/s [85]. At $34.96/MBH, this comes down to a ECM 
installed cost of $366,503. Boiler control options can achieve energy savings in heating 
systems and improve boiler performance efficiency [131]. A study into the matter found 
a 20% energy saving opportunity for boiler controls in the built environment [132]. 

Table 10  Overview of boiler replacement costs (ECM 5) 

Building 
Boiler Capacity 

Retrofit 
Heating 

Efficiency 
Retrofit Cost ECM Cost 

($) 

Large Office Nominal operating 
capacity of 

3,072,498.94 W or 
about 10,484 MBH. 

95% $34.96/MBH $366,503 

Medium Office Not Applicable 
Small Office Not Applicable 
Primary School Nominal operating 

capacity of 877,080 W 
or about 2,993 MBH. 

95% $34.96/MBH $104,626 

Secondary School Nominal operating 
capacity of 1,717,600 

W or about 5,861 
MBH. 

95% $34.96/MBH $204,884 

Hospital Nominal operating 
capacity of 1,680,500 

W or about 5,734 
MBH. 

95% $34.96/MBH $200,459 
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Another ECM deployed in our hypothetical energy efficiency project is the use of high-
efficiency fans to replace current fans (ECM 6).  The fans in the system provide the critical 
function of ventilation and air flow that support and provide suitable indoor air quality 
[133]. CityBES provides a cost estimate for high-efficiency fans dependent on the capacity 
maximum air flow that the fan can ventilate. The ECM cost overview is provided in Table 
11. Control strategies for efficient fan operation and performance are available and can 
deliver energy savings [134-136].  

Table 11  Overview of Fan Replacement Costs (ECM 6) 

Building Fan Capacity (cfm) Retrofit Cost ($/cfm) ECM Cost ($) 
Large Office Fan 1: 38,987 

Fan 2: 397,184 
Fan 3: 39,877 
Fan 4: 17,417 

Fan 1 : $0.176 
Fan 2 : $0.176 
Fan 3 : $0.176 
Fan 4 : $0.390 

$90,470 

Medium Office Multiple Multiple $32,196 
Small Office Fan 1:1,335 

Fan 2:1,865 
Fan 3:1,271 
Fan 4:1,632 
Fan 5:1,610 

Fan 1: $0.59 
Fan 2: $0.59 
Fan 3: $0.59 
Fan 4: $0.59 
Fan 5: $0.59 

$4,537 

Primary School Fan 1:593 
Fan 2:2,882 
Fan 3: 424 

Fan 4: 1,716 
Fan 5: 2,564 
Fan 6: 4,810 
Fan 7: 17,968 
Fan 8: 17,862 
Fan 9: 13,646 

Fan 10: 14,408 

Fan 1: $1.16 
Fan 2: $0.59 
Fan 3: $1.16 
Fan 4: $0.59 
Fan 5: $0.39 
Fan 6: $0.39 
Fan 7: $0.18 
Fan 8: $0.18 
Fan 9: $0.18 
Fan 10: $0.18 

$17,986 

Secondary School Multiple Multiple $50,319 
Hospital Multiple Multiple $41,514 

 
3.4.5. ECM 7: High-Efficiency Water Heater 

The final ECM under consideration in this research project is to replace the current water heater 
with a high-efficiency version (ECM 7). CityBES again provides relevant cost estimates per 
capacity unit. The ECM intervention cost profile is summarized for each building benchmark in 
Table 12.  
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Table 12  ECM 7 water heater cost overview 

Building Water Heater 
Capacity (gallons) Retrofit Cost ($/gallon) ECM Cost ($) 

Large Office 200 $20.82 $4,163 
Medium Office 100 $21.76 $2,176 
Small Office 40 $21.76 $858 
Primary School 264 $20.82 $5,500 
Secondary School 792 $20.82 $16,499 
Hospital 793 $20.82 $16,499 

 
3.5. Modeling Performance Variation 

To reflect performance uncertainty, we modelled variation in the performance of each 
ECM and variation in their scheduling in each of the six buildings. The scheduling 
variation is introduced to model many of the ECM’s reliance on occupant behavior. 
Overall, this performance variation serves the function of introducing uncertainty and 
risk in post-retrofit performance in each of the six energy efficiency retrofit projects. This 
uncertainty and risk translates to an uncertain distribution of possible energy savings.  

A series of scenarios are developed to model performance variation under different 
circumstances:  

• Model 1: Pre-retrofit. This is the condition of the building before any energy 
efficiency project has been initiated. The pre-retrofit condition is stochastically 
modeled to simulate uncertainty in performance using the existing equipment. To 
model this uncertain performance profile, we apply variation in all schedules and 
in the performance of the equipment itself. 

• Model 2: Post-retrofit without controls. This scenario represents the operational 
condition of the building after an energy efficiency retrofit project has been 
conducted. All the energy efficiency equipment has been installed. However, no 
performance variation control technology is used. As such, variation in all 
schedules and in the performance of the equipment itself is included in this 
scenario.  

• Model 3: A series of control scenarios. We simulate several control packages to 
determine suitable performance control applications.  

o Full Portfolio: Post-retrofit with full control (all controls installed). In this 
scenario, we apply a performance control function to all high-efficiency 
equipment installed as part of the energy efficiency retrofit project. This 
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means that we lower the variation in operational schedules of each unit of 
equipment that is under control and limit the operational variation of the 
equipment itself as well.  

o Portfolio 1: Post-retrofit with control on major energy consumers. Here, 
we argue that control functions could perhaps be best placed on only those 
functions that consume a lot of energy. As such, the operational variation 
of interior lighting and plug loads is controlled while all other end-uses 
remain subject to a higher level of performance variation.  

o Portfolio 2: Post-retrofit with control on major uses of expensive energy. 
Here, we apply control functions on expensive energy consumption end-
uses. As such, the boiler and heater equipment performance is sharply 
controlled while all other end-uses remain subject to a higher level of 
performance variation.  

o Portfolio 3: Post-retrofit with control on devices sensitive to user inputs. 
Some devices likely experience higher levels of user manipulation and, as 
such, are perhaps more worthwhile controlling programmatically instead. 
Therefore, in this scenario we apply control functions on temperature 
setpoints, lighting load, and water heater equipment operations.   

3.5.1. Distributions and Variance 
To model performance variation, we applied different distributions. This is in line with 
existing research efforts into this topic (e.g., see Refs [21; 22; 37; 88]). Each variable is 
assigned a distribution profile based on lessons learned from the literature [21; 22; 37; 88] 
but are also based on physical constraints and limits. For example, efficiency values can’t 
exceed 100% and, as such, distributions of efficiency performance can perhaps be 
captured better by a triangular distribution than a normal distribution.  

 -Normal or Gaussian Distribution: This distribution is defined by a mean and a standard 
deviation value. With this distribution we were able to display symmetric probabilities 
around a mean allowing us to get increasingly more likelihood of outcome close to the 
mean than far away in an exponential manner. The results in this distribution are 
however, likely to be in any point from –infinity to +infinity. 

-Triangular Distribution: The distribution is defined by a max, a min, and a mode. Where 
the mode is the most probable outcome. The likelihood of getting a value away from the 
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mode is linearly decreased. This function allows us to generate skewed distributions and 
contain the values between the min and the max. This function was useful for 
distributions that can’t exceed certain values (e.g. occupancy cannot surpass 100%). The 
distribution profiles are given in Table 13.  

Table 13  Distributions of performance variation for each variable 

Variable Distribution 
Interior lighting load Normal 
Plug load Normal 
Business day heating Triangular 
Non-business day heating Triangular  
Business day cooling Triangular 
Non-business day cooling Triangular  
Chiller performance Normal 
Boiler performance Normal 
Fan performance  Normal 
Lighting schedule Triangular 
HVAC schedules Triangular 
Plug load schedules Triangular 

The values for the distributions were found in the literature. We were able to find the 
mean/mode, max, min and standard deviation of the efficiencies of the building devices 
before and after applying ECMs. The values for the schedule distributions were obtained 
from the benchmark building files. A set of dummy variables were added, however, to 
increase variability when dealing with interior lightning, HVAC and equipment 
schedules. In this process, a deviation around the mean values provided in the file was 
added in order to account for unforeseen behavior.   

Importantly, we made the lighting schedule dependent on the occupancy schedule. This 
was done while keeping in mind the following:  

• Lighting schedules correlate with occupancy: the main function of lighting is to 
provide illumination when people are present.  

• However, lights can be left on in an empty room.  

We are able to generate a lighting schedule by adding a certain allowed variance with 
respect to occupancy schedule. The added light usage was more linearly likely to happen 
in smaller additions than in larger additions (e.g. it was more likely that the light usage 
surpassed occupancy by 5% than by 15%) (Figure 4). 
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Figure 4 Lighting in building benchmark room compared to occupancy 

When adding the previous distribution to the occupancy distribution, the overall light 
usage is provided in Figure 5. In Figure 5, the black line resembles the occupancy in the 
building depending on the hour of the day, and the blue area represents the percentage 
of light used in the building. Again, the likelihood of getting a value close to the black 
line goes down the further away you are from it. Two sets of assumptions were made in 
this process. The first one deals with the fact that there is high increment in the light usage 
between 1-7 and 22-25. These hours represent night time, and even though the occupancy 
in the building is kept at a minimum, we find likely that some lights are kept on 
unintentionally all night, and therefore cannot be proportional to the occupancy at these 
hours. The second assumption considers that in the valley found in the middle of the day 
(lunch time), occupancy in the building decreases by a half, however, the lights in the 
office are usually kept on. 
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Figure 5  Light and occupancy schedules 
The same process was followed with HVAC and Equipment schedules. A sketch of the 
variables is included below in Figure 6 for illustrative purposes.  

 

Figure 6  Sketch of the variables associated with the investigation 
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Performance variation in input parameters for the large office benchmark building is 
given in Table 14. The performance variation captured in Table 14 for the large office 
building benchmark illustrates operational variation. The outcome – a performance range 
of the energy efficiency retrofit project – enables statements of probability of savings. For 
instance, the resulting distribution can show that there is a 90% chance that a 10 year 
simple payback will be achieved and a 20% chance that an 8 year simple payback is 
realized. This output is used in the following sections such as in Section 4.0 where the 
profile is used to determine the ESCOs placement of the savings guarantee.  
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Table 14   Pre- and post-retrofit performance variation inputs for the large office 

ECM Distr. 
Pre-retrofit Post-retrofit 

Ref. 
Input SD Min Max Input SD Min Max 

1 LED upgrade (lighting load) (W/m2) Normal 16.14 0.565 N.A. N.A. 6.46 0.226 N.A. N.A. [88] 
2 Appliance upgrade (plug load) (W/m2_ Normal 10.76 4.549 N.A. N.A. 8.07 3.412 N.A. N.A. [88] 

3 Thermostat set-point 
Heating (C) 

Triangular 

21 N.A. 19.630 22.370 20 N.A. 18.696 21.304 [88] 
15.6 N.A. 14.583 16.617 14.6 N.A. 13.648 15.552 [88] 

Cooling (C) 
24 N.A 22.435 25.565 25 N.A. 23.370 26.630 [88] 

26.7 N.A 24.959 28.441 27.7 N.A. 25.894 29.507 [88] 
4 High-efficiency chillers (reference COP) Normal 5.11 0.024 N.A. N.A. 6.2 0.029 N.A. N.A. [88] 
5 High-efficiency boiler (thermal efficiency, %) Normal 0.76 0.011 N.A. N.A. 0.95 0.014 N.A. N.A. [22] 
6 High-efficiency fans (total efficiency, %) Normal Various 0.050 N.A. N.A. 0.65 0.033 N.A. N.A. 5% SD 
7 High-efficiency water heater (thermal efficiency, %) Normal 0.8 0.012 N.A. N.A. 0.95 0.014 N.A. N.A. [22] 

Note: SD stands for Standard Deviation. 
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4.0. Results: Influence of Controls on Savings Guarantee 
The models and modeling approach described in the previous sections above yield an 
understanding of the risk profile of energy efficiency investment and what options are 
available for mitigation of that risk. This section describes the outputs of the various 
models above and extracts key findings. To that end, for each of the six building 
benchmark models studies, we report the following: 

1. Energy efficiency project profile: the investment cost and energy savings profile 
of the hypothetical project is evaluated. We model performance uncertainty of the 
project using the stated level of performance variability for each relevant variable. 
We report on the distribution of expected savings in energy and dollar terms.  

2. Strategic placement of the energy savings guarantee: Based on the uncertain 
profile of energy savings, we use the energy guarantee savings model to determine 
where a risk-averse ESCO could be expected to place the guarantee.  

3. Comparing scenarios with and without performance control technologies: we 
contrast the guarantee placement for the scenarios with and without performance 
control technologies.  
 
4.1. Energy Efficiency Project Profile 

A first-level understanding of the hypothetical projects evaluated here is to review the 
total project investment amount for each of the building benchmarks (Table 15). Due to 
their various sizes and other specific characteristics, the total project investment amount 
is substantially different from, say, the small office to the hospital to the large office. The 
large office represents the largest project in terms of total project investment at about 
$1.23 million. 

This project investment generates energy savings compared to pre-retrofit conditions. 
However, as discussed above, the profile of energy savings is uncertain due to 
performance variation. To illustrate this, the pre-retrofit conditions and post-retrofit 
performance in project performance year 1 are illustrated in energy units in  

Figure 7. A broad range of possible energy consumption levels exists across the 10,000 
simulations modeled here for both the pre-retrofit and the post-retrofit without 
application of performance control. For the large office, in terms of energy savings, the 
post-retrofit scenario provides an average annual consumption level of about 24,057 GJ 
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compared to the pre-retrofit average consumption level of 37,034 GJ – an average savings 
of about 35%. 

Table 15 Energy efficiency project investment profiles  

Building Benchmark Model Project Investment ($) 
Large Office $1,227,232  
Small Office $7,500  
Primary School $168,794  
Secondary School $386,839  
Hospital $807,219  

As illustrated in Figure 7, the probability of savings is such that, under highly 
unfavorable circumstances, the project could have annual performance levels that are 
below pre-retrofit performance. In other words, in the most efficient operation of the pre-
retrofit benchmark building and the most inefficient operation of the post-retrofit model, 
no energy savings would occur – in fact, energy consumption levels in GJ for that year 
would be higher compared to the baseline. However, the above described scenario of no 
energy savings is unlikely. Other building models, like the hospital, do not have such 
overlap. 

Figure 7 also illustrates the performance profile when performance control technologies 
are installed in the project. It is clear from Figure 7 that the performance variation is 
substantially reduced in our modeling approach as the resulting distribution is much 
more narrow. In addition, the application of performance variation control technology 
also improves the overall functioning of the equipment, leading to higher average savings 
overall. For example, for the large office, the average energy consumption in GJ without 
application of performance variation control technology is 24,058 GJ while the average 
energy consumption is 21,954 with application of this technology option. 
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Figure 7 Benchmark Pre- and Post-Retrofit Energy Consumption without 

and with Controls (10,000 simulations each) for the benchmark 
buildings 

Using Equation 8 and Equation 9, the probability that savings occur can be calculated for 
performance year 1 and beyond. The probability that a certain amount of savings in dollar 
terms can occur is integral in the calculus of energy savings guarantee placement. As 
such, the possible distribution of savings, in dollar terms, is illustrated for each building 
benchmark for each of the 20 years of the hypothetical projects (Figure 8). We compare 
the probability of savings to occur between the post-retrofit without controls and the 
post-retrofit with controls installed. As Figure 8 shows, the distribution of possible 
savings is narrower when controls are applied and, importantly, the low end of the 
distribution is substantially above the low-end of the distribution when no controls are 
applied. This makes the hypothetical project more attractive to the investor. When 
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incorporating various dynamic effects – such as equipment degradation, inflation, fuel 
price volatility, contracted electricity price escalators, etc. (see Appendix A), overall 
project performance is expected to increase over time (Figure 8).  

 

Figure 8 Annual energy savings for the building models (10,000 
simulations in each year) for all performance years 
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4.2. Strategic Placement of the Energy Savings Guarantee 
Now, we introduce the ESCO’s perspective by asking the ESCO to guarantee the 
performance of the ECMs. This guarantee is dependent on the energy efficiency project 
profile introduced above and – importantly – on the ESCO’s tolerance for risk. We assume 
a highly risk averse ESCO with a risk tolerance of 95%. This means that 95% of the 10,000 
simulations of the project need to exceed the guarantee in each year of the 20-year project 
in present value terms. The ESCO’s risk for profit losses, therefore, is virtually eliminated 
by this risk-averse placement of the guarantee. In other words, the ESCO can reasonably 
expect the energy efficiency project to perform in accordance with the annual savings 
guarantee.  

Using the guarantee placement model, the cost savings profile of the 20-year project 
yields a strategic estimate of the guarantee an ESCO might be willing to provide. Again, 
we compare the guarantee placement for the post-retrofit scenario where no controls are 
installed and for the scenario where controls are in place. The use of performance control 
technology is proposed as a viable risk mitigation pathway for energy efficiency 
performance projects. To consider the effect of using these controls, we calculate the 
upward movement expected in energy savings guarantee placement when the controls 
improve performance and reduce risk. This process is illustrated in Figure 9. Effectively, 
the scenario where controls are applied enables the ESCO to reasonably expect a higher 
level of performance, leading a higher guarantee (`$95,000 compared to the no controls 
scenario of ~$50,000). 
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Figure 9 Guarantee placement with and without automated controls 
(hypothetical) 

Please note that the values for the axes of each graph in Figure 10 are the same as those 
in Figure 9 and, therefore, are not repeated here. The “full control” scenario applies a 90% 
performance standard for variation reduction on all 7 ECMs. 7 The “full control” scenario 
results in two improvements: 1) a much narrower performance range; and 2) actual 
performance improvement of the devices leading to higher average savings levels. For 
example, for the large office benchmark building, the energy efficiency project profile 
extracts an ESCO guarantee of ~$116,000 in annual savings when controls are applied. In 
this scenario, the project’s performance is such that the guarantee can be more than 
double the guarantee in a scenario where no controls are in place. The secondary school 
building benchmark model, the small office, and the primary school model show a 
similar potential. The hospital building has large areas that are not subject to energy 

                                                           
7 It is challenging to determine the extent controls enable performance uncertainty reduction – some level 
of behavioral, technological, and other risks remain even after controlling for various aspects of the devices’ 
operation – so the 90% reduction in performance range is currently an assumption. Further research will 
need to evaluate this question in more detail perhaps through sensitivity analysis. 
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efficiency improvements in this envisioned project (e.g. operating rooms, emergency 
rooms, patient rooms, etc.) leading to a smaller difference between the two scenarios.  

 

Figure 10 Guarantee design for “no control” and “full control” scenarios for 
the building models  
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4.3. Comparing Projects with and without controls 
As per the above illustrations, the implementation of performance control technologies 
can extract higher guarantees from ESCOs and narrow the dollar savings distribution. 
These are critical benefits. Table 16 summarizes some of the main contributions of the 
controls under the approach modeled here. In particular, the control function modeled 
here: 

a) Improves overall savings by achieving a lower average consumption; 
b) Lowers performance risk by achieving a significantly lower standard deviation of 

the distribution; and 
c) Significantly raises the guarantee, in some cases by over 100%.  

Table 16 Energy Efficiency Guarantees for projects without and with 
controls 

  Large 
Office 

Small 
Office 

Primary 
School 

Secondary 
School 

Hospital 

Post-Retrofit 
w/o Controls 

Energy 
consumption 

(GJ) 

Avg. 24,057 411 4,764 13,286 41,157 

SD 2,681 28 344 650 561 

Guarantee Level $47,500 $0 $7,500 $30,000 $152,500 

Post-Retrofit 
w/ Controls 

Energy 
Consumption 

(GJ) 

Avg. 21,954 392 4,396 12,537 40,981 

SD 271 3 46 90 108 

Guarantee Level $116,000 $2,500 $15,000 $70,000 $160,000 
Guarantee 
increase ($) 

$ $68,500 $2,500 $7,500 $40,000 $7,500 
% 144% - 100% 133% 5% 

 
The ESCO can reasonably expect the project to be (much) less risky and, as such, can raise 
the energy savings guarantee. This benefits the ESCO’s ability to win new projects. In 
addition, a higher guarantee makes the project less risky for both the client and the third-
party investor, making it more likely the project will actually come to fruition. For 
instance, the higher guarantee is attractive to the project client: a higher guarantee enables 
a project with better financial performance. The ESCO can quantify the benefits of 
reaching this higher guarantee against the cost of installing the additional controls. A 
$55,000/year increase in the guarantee, for instance, does not directly translate to a 
$55,000 profit improvement to the ESCO. Instead, this calculus is dependent on a range 
of project and ESCO-specific dimensions, including but not limited to: 

• The value the ESCO places on winning the project bid; 
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• Costs associated with installing the additional controls; 
• Risk tolerance of the ESCO; 
• Quality of relationship between ESCO and client; and 
• Costs associated with the guarantee itself. 

In Part II of the report, we introduce and use possible method to quantify the cost 
associated with raising the guarantee from the perspective of the ESCO. 
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PART II 

INTER-PARTY TRUST: CONTROLS, INSURANCE, AND THE 
ENERGY SAVINGS GUARANTEE (PRELIMINARY) 

5.0. INTER-PARTY TRUST THROUGH CONTROLS AND ENERGY 
SAVINGS INSURANCE  

As a risk mitigation strategy, the energy savings guarantee has helped to accelerate the 
sector and Part I of this report shows how controls could further advance the market by 
raising the guarantee. Part II of the report explores the following: 

1. Inter-party trust-building through the use of controls; 
2. Sidestepping inter-party trust concerns through energy efficiency performance 

insurance; 
3. Quantifying the cost associated with raising the guarantee from the perspective of 

the ESCO; 
 
5.1. Inter-party trust-building through smart controls 

If trust is lacking between parties, the actual value of the guarantee matters less than the 
client’s perception of the trustworthiness of the ESCO’s promise. The project host, for 
instance, can be concerned that the ESCO is over-promising on savings without any plans 
to cover an eventual savings shortfall. Contractual stipulations of energy savings 
guarantees can be complex and often contain clauses that describe scenarios where the 
ESCO will not see itself as responsible for performance shortfalls. For example, 
responsibility for project under-performance can be argued by the ESCO to be anywhere 
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(e.g. weather differences, behavioral changes, etc.) but on the ESCO, leaving the project 
host with limited recourse to recuperate lost savings. Currently, the project host can 
engage in costly litigation with the ESCO, creating a clear adversarial relationship.  

Controls can help improve this situation by creating vast amounts of performance data, 
where under-performance can be correlated to potential causes. Real-time performance 
monitoring, for instance, can identify run-away operation of HVAC equipment and 
correct quickly when detected. Behavioral pattern changes can be controlled using 
automated and smart management of devices, improving insight into their effects. For 
this scenario to play out, however, the data will need to be available to the project host in 
a format that enables understanding and insight. Too often, energy service company 
(ESCO) calculations and software are seen as ‘black box’ tools that generate mistrust by 
the project host.  

In addition, trust-building and other benefits accrue from use of the automated 
technology options. Many of these benefits can be connected to the risks identified in 
Table 1 above [56; 57; 61; 64-66] (see section 5.1.1 to 5.1.4).  

5.1.1. Operational and Engineering Risk Reduction: 
• Time efficiency: automated performance control accelerates whole-building 

assessment from a typical 4 days to 1 day and reduces time needed for custom 
engineering calculations from 6 days to 1 day [67]. Automated analysis yields 
actionable data within the first month of energy conservation measure (ECM) 
installation [57]. 

• Time certainty: long lifetime projects expose ESCOs to energy consumption patterns 
caused by client behavior changes [68]. Automated data analysis could help attribute 
consumption pattern variation throughout the lifetime of the project making deep 
energy retrofits more attractive to ESCOs. 

• Improved accuracy: A database of 537 geographically diverse commercial buildings, 
shows that industry standard predictive accuracy can be achieved with only six 
months of training data [18; 64; 69]. When assessed as part of a portfolio of buildings, 
predictive accuracy improves further leading to the conclusion that these models are 
“compellingly accurate” [67]. 

• Standardization and certification: database development supports and accelerates 
investor-ready program design – a key need of the sector [2]. 
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5.1.2. Monitoring and Verification Risk Reduction: 
• Portfolio level analysis and benchmarking: real-time and high-resolution automated 

M&V capable of processing “big data” enables analysis of many buildings with 
various degrees of retrofitting simultaneously.  

• Improved sampling: automated M&V scalability and precision allows larger sample 
sizes, retrieving feedback on the performance of diverse aspects of the retrofit project.  

• Fast anomaly and fault detection: real-time data collection and control enables faster 
anomaly or fault detection and interface options such as online dashboards empower 
clients and ESCOs to mitigate underperformance.  

5.1.3. Economic risk reduction:  
• Time-of-day analysis or grid-level location of savings can motivate transmission and 

distribution planning or microgrid development.  
• Automated M&V at scale represents an effective pathway to rigorous and long-term 

M&V at lower cost compared to whole-building IPMVP options. 
• Utility billing validation: automated M&V can include real-time utility tariff and 

energy consumption analysis to validate utility bills through, among others, a) 
continuous monitoring and management of peak load consumption; b) streamlining 
of utility-related processes to, for example, minimize personnel requirements; and c) 
identification of metering or billing errors by automatically crosschecking 
consumption patterns with utility bills.  

5.1.4. Financial risk reduction:  
• Uncertainty mitigation: strategic use of automated M&V can deliver investor-ready 

program design and enhance the energy savings guarantee (see below). 
• Data generated by automated M&V can improve project finance-ability as it supports, 

among others, a) accurate savings estimates, b) risk management of operational and 
performance uncertainty, and c) quick remediation of potential energy saving 
shortfalls. 
 

5.2. Addressing inter-party trust concerns through energy efficiency 
performance insurance 

The energy savings guarantee is, effectively, a risk-transfer contract between the ESCO 
and the client. Such financial risk mitigation benefits the sector as clients are typically 
loss-averse (valuing loss mitigation higher than gains). Other forms of financial risk 
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mitigation are also possible. Here, we provide a preliminary discussion of financial risk 
mitigation in the form of energy efficiency performance insurance. Energy efficiency 
insurance has been suggested as a possible financial risk mitigation tool in the energy 
efficiency retrofit sector [25; 26; 79]. In exchange for a premium, an energy efficiency 
insurance product insures a predefined level of financial performance of the project (e.g. 
minimum level of savings). This represents a key distinguishing factor: under an energy 
efficiency insurance approach, the premium is charged independently of realized savings 
[28]. The premium under energy efficiency insurance, thus, is deterministic (equal annual 
payments occur no matter the savings profile) while the energy savings guarantee 
premium is stochastic (it is directly dependent on the performance level). The level of the 
premium, meanwhile, is dependent on the probability and magnitude of possible risk 
events. 

As with energy savings guarantees, it is important to establish the distribution of costs 
and benefits. To determine the actuarially fair premium for protection against the risk 
event of under-performance, we rely on the model proposed by Töppel &Tränkler  [28]. 
Relevant sections of the model are described in Appendix B.   

By simulating many iterations of K (see Appendix B), we can obtain a cost curve for 
insurance. Looking at the cost curve of insurance, we can calculate the actuarially fair 
annual premium for two scenarios:  

• The actuarially fair premium resulting from insuring project performance at the 
level of the ESCO guarantee when no controls are installed (Guarantee 1). This 
scenario calculates the premium cost of opting for insurance instead of the ESCO 
when the ESCO doesn’t include controls. 

• The actuarially fair premium resulting from insuring project performance at the 
level of the ESCO guarantee when controls are installed (Guarantee 2). 
Importantly, no controls are actually installed in this scenario – i.e. we use the 
distribution of savings from the scenario when no controls are installed but we just 
set the level of insurance at the higher value. This scenario calculates the cost of 
opting for insurance instead of the ESCO when the ESCO does include controls.  

These scenarios can be graphically located on the cost curve for insurance (Figure 11). 
Insuring $47,500 in annual savings (Guarantee 1), as such, can be calculated to cost an 
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annual premium of around $1,300 (excluding transaction costs and any deductibles). This 
value is calculated as the sum of the magnitude of the risk events times their probability. 
An annual premium of around $3,300 in insurance could cover $102,500 in annual savings 
(again, excluding transaction costs and deductibles likely accompanying any insurance 
package). The insurance premium is relatively low – an annual premium of $3,300 for a 
twenty-year insurance package only comes down to $66,000. However, when insuring 
$116,000, there is just under a 1 in 3 chance that a claim will be submitted by the client 
each year. The average size of this claim is about $12,000. The actuarially fair premium as 
such only captures a portion of the situation – transaction costs, deductibles, insurance 
company profits, etc. provide additional dimensions. This could be part of future 
research.   

 

Figure 11 Insurance premium cost for different levels of insurance 
coverage for the large office building benchmark model 

5.3. Cost of the guarantee as an indication of the value of controls 
The calculations performed above also provide an initial understanding of the expected 
cost function of the guarantee itself. In particular, assuming the ESCO performs a similar 
risk calculation of the project – calculating the probability and magnitude that actual 
performance is below the guarantee – the same model can be applied to determine ESCO 
guarantee cost. We use a higher interest rate in this case (7%) to reflect ESCO profit 
considerations. Doing so yields an annual cost associated with the guarantee at ~$1,500 
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for a guarantee at $47,500 and about $3,700 for a guarantee at $102,500. The ~$2,200 
difference can be used as an additional waypoint when contemplating the installation of 
controls – however, as established in the first section of this report and the first few 
paragraphs of the second section of the report, this is only one of the dimensions 
associated with the functions of controls.  Future research can be directed at 
understanding and quantifying the various dimensions. 
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6.0. Concluding Remarks 

The conceptual and modeling approach introduced in this report targets performance 
uncertainty – a dimension commonly neglected in energy savings calculations [80] 
despite its potential usefulness in the investment decision-making process [76; 137]. The 
stochastic profile of energy efficiency projects is illustrated both with and without the use 
of performance variation control technologies in an attempt to quantify the contribution 
of such advanced, real-time, high-accuracy control technology. In effect, the use of this 
technology enables a “deterministic” accounting of project performance through real-
time and high-quality measurement [63] that limits the stochastic range of performance. 
The advancements in advanced data analytics and improved data collection are, indeed, 
shaping what some call the monitoring and verification (M&V) 2.0 or “automated M&V” 
paradigm [56; 57]. Automatic and interval performance measurement of a variety of 
devices and equipment (either at the device-level, sub-meter level, or whole-building 
level) provides previously unavailable insights into the overall project [19].  

In particular, the use of advanced, real-time, high-accuracy control technology could 
have consequences for the placement of the ESCO guarantee in an energy performance 
contract project. Raising the guarantee by reducing performance variation is one 
hypothesized benefit of putting controls in place. We have made an attempt at 
quantifying this benefit for several common building types in the United States and show 
that controls can deliver a substantial benefit. We also briefly discuss the potential role 
played by controls in the realm of energy efficiency performance insurance and provide 
several preliminary quantifications of the value of such insurance. This will be the subject 
of further research and the outcomes provided in this report should be seen as a 
preliminary discussion.  

The combined application of probabilistic performance and “deterministic” accounting 
and management transforms uncertainty into metrics legible for conventional risk 
management strategies such as the implementation of robust energy savings guarantees 
or energy efficiency insurance products. These risk management strategies can be 
attractive to all involved parties. Our multi-stage methodology combines several models 
with topical data related to automated M&V. The case study evaluation of several 
hypothetical energy efficiency performance projects enables the model’s review of energy 
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performance contracting (EPC) projects with guaranteed energy savings agreements 
(GESAs) – the most common form of project in the market today [30]. 

The approach devised and tested in this report could help accelerate ongoing efforts to 
improve investor and potential clientconfidence and strengthen the energy efficiency 
market. For example, ongoing efforts to enhance investor confidence include the Investor 
Confidence Project from U.S.-based Environmental Defense Fund (EDF) or the EEFIG’s 
plan to compile an open source database for energy efficiency finance performance. 
Motivating investment in energy efficiency makes use of the most cost-effective pathway 
to reduce CO2 emissions [139; 140] and, responsible for up to 40% of CO2 emissions, the 
building sector represents an especially salient target [2].  

The 2018-2019 research effort has so far expanded on previous research conducted under 
the Energy and Environmental Policy Analysis (EEPA) Project. This 2018-2019 Final 
Report details findings and the analytical dimensions investigated. In particular, the 
research effort in 2018-2019 presents the following: 

• Comprehensive analysis: the research expands the scope of previous work by 
reviewing seven possible ECMs with accompanying control functions. Moreover, 
the project evaluation period now covers 20 years. The investigation includes 
evaluation of several additional building benchmark models. We calculated 
exhaustive performance profiles through Monte Carlo analysis (in total, several 
million simulations were conducted). 

• Determine consequences for energy savings guarantee: We provide preliminary 
understanding of the role of building controls in the energy savings guarantee 
setting process and argue that controls could help elicit higher guarantees.  

• Benchmarking research results against insurance costing model: We deliver a 
preliminary overview of ways to compare the benefits provided by controls in 
addition to those of the higher guarantee. As a part of this effort, we constructed a 
model capable of setting some initial cost estimates on the varying components of 
a possible EPC project.  

• Standardized and automated computation: Using KNIME Analytics Software, 
the research effort developed a workflow-based model capable of automated and 
consistent computation. This enables reproducibility of results and should allow 
for consistent research moving forward. 
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Two findings stand out in the report: 

• Tests of our multi-stage model confirms that the model captures the interlocking 
dynamics associated with energy efficiency insurance, guarantee setting, and 
performance control technology implementation. 

• Our results indicate that such technology implementation can deliver substantial 
benefits in the form of, among others, a large increase in the energy savings 
guarantee.   
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8.0. APPENDIX A: ENERGY SAVINGS GUARANTEE 
SETTING MODEL 

 

8.1. Cash Flow of Project Under Energy Savings Guarantee: 
Realized energy bill savings (St) can be modeled at time (t) as follows: 

EQUATION 1:  𝑺𝑺𝒕𝒕 = 𝑪𝑪𝒕𝒕𝒐𝒐𝒐𝒐𝒐𝒐 −  𝑪𝑪𝒕𝒕𝒏𝒏𝒏𝒏𝒏𝒏  

Where Equation 1 describes realized energy bill savings as a function of the energy bill 
costs before energy efficiency retrofit (Ctold) and after energy efficiency retrofit (Ctnew). St 
as such is determined by the amount of energy used and the price paid per unit of energy 
before retrofit versus the amount of energy used and the price paid after retrofit: 

EQUATION 2:  𝑪𝑪𝒕𝒕𝒐𝒐𝒐𝒐𝒐𝒐 =  𝑷𝑷𝑬𝑬𝟎𝟎 ∗ 𝑸𝑸𝑬𝑬𝟎𝟎 

EQUATION 3:  𝑪𝑪𝒕𝒕𝒏𝒏𝒏𝒏𝒏𝒏 = 𝑷𝑷𝑬𝑬(𝒕𝒕) ∗ 𝑸𝑸𝑬𝑬(𝒕𝒕) 

Where energy bill costs before retrofit (Ctold) are fixed at time = 0 (i.e. the baseline) as 
indicated by PE0 (price of energy at t = 0) and QE0 (quantity of consumption at t = 0) while 
energy bill costs after retrofit (Ctnew) fluctuate over the lifetime of the project. The price 
fluctuation is addressed by separating out natural gas and electricity (the only two energy 
sources under evaluation in this project) and considering their price developments over 
time. As mentioned, electricity is assumed to have been contractually negotiated while 
natural gas prices are subject to market volatility: 

EQUATION 4:  𝑷𝑷𝑬𝑬,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒈𝒈𝒈𝒈𝒈𝒈 =  𝑷𝑷𝑬𝑬𝟎𝟎,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒈𝒈𝒈𝒈𝒈𝒈 𝒆𝒆𝒆𝒆𝒆𝒆 ��𝜶𝜶𝑬𝑬(𝒕𝒕) −  
𝝈𝝈𝑬𝑬
𝟐𝟐(𝒕𝒕)
𝟐𝟐
� 𝒕𝒕 + 𝝈𝝈𝑬𝑬(𝒕𝒕)𝝐𝝐𝒑𝒑√𝒕𝒕� 

EQUATION 5:  𝑷𝑷𝑬𝑬,𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 =  𝑷𝑷𝑬𝑬𝟎𝟎,𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 ∗ (𝟏𝟏 + 𝑬𝑬𝑬𝑬𝑬𝑬)𝒕𝒕  
Where αE(t) represents an annual price drift coefficient and σE(t) represent an annual 
volatility coefficient. Electricity price is escalated at an annual coefficient that is 
contractually negotiated (ESC).  

The amount of energy consumption (QE) is modeled stochastically (for description of 
approach, see Section 0). However, following Deng et al. [23], we assume that there is a 
specific pattern to the expected savings (i.e. the mean of the distribution) over the lifetime 
of the project. This pattern accounts for the operationalization of equipment and the 
resulting degradation over the lifetime of the project. This expected savings estimate is 
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assumed to be calculated by the system engineers as a best estimate. While our numbers 
differ from Deng et al. [23], we apply the same pattern as given in Table 17.  

Table 17 Pattern of energy consumption expected savings (i.e. mean of 
the stochastic distribution) throughout the lifetime of the 
project  

Year of Project 
(years) 

Engineers’ estimation of annual savings deviation compared to 
first year 

1 0% 
2 +6.85% 
3 +12.33% 
4 +14.38% 
5 +13.70% 
6 +13.01% 
7 +12.33% 
8 +10.96% 
9 +9.59% 
10 +6.85% 
11 +1.37% 
12 -4.11% 
13 -10.96% 

Any following 
years: -10.96% 

 

8.2. Under- or Over-Performance of the Guarantee Decisions: 
As Deng et al. [23] describe, the guarantee placement decision is influenced by two key 
parameters. First, the value of the guarantee. Second, the shared percentage if project 
returns exceed the guarantee. Consider the shared percentage from the perspective of the 
ESCO as 1 – β where β is the fraction of savings that will be allocated to the client in the 
case of over-performance. Based on this consideration, a profit difference (D(t)) can be 
calculated. From the perspective of the ESCO (DE(t)), this yields the following: 

EQUATION 6:  𝑫𝑫𝑬𝑬(𝒕𝒕) =  𝑺𝑺(𝒕𝒕) − 𝑮𝑮(𝒕𝒕) −𝒎𝒎𝒎𝒎𝒎𝒎 (𝟎𝟎,𝜷𝜷(𝑺𝑺(𝒕𝒕) − 𝑮𝑮(𝒕𝒕))) 
Where G(t) is the annual guaranteed energy cost savings and S(t) is the realized savings. 
G(t) could be made subject to an annual adjustment (see Deng et al. [23]) but the 
guarantee here is assumed to be equal in each year of the project. Under the guaranteed 
energy savings contract used in this project, no profit sharing takes place under the 
condition of over-performance: all the over-performance value goes to the client, i.e. β = 
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1. Any over-performance thus limits the profit value of the ESCO by an equal amount 
(S(t) – G(t) = β * (S(t) - G(t)). As such, there is no direct financial gain for the ESCO when 
over-performance is achieved and the ESCO will pursue a guarantee that is as high as 
possible if it is within its risk tolerance.  

8.3. ESCO Risk Tolerance and Setting the Guarantee: 
Considering that Equation 6 provides for an annual profit difference calculation, the final 
step is to determine the project total profit difference. To do that, the ESCO’s annual profit 
differences are discounted to a present value using an expected rate of return (r). As such, 
the previous equations shape the calculation of the total profit difference from the ESCOs 
perspective (DE, total(G(t), β):  

EQUATION 7:  𝑫𝑫𝑬𝑬,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑮𝑮(𝒕𝒕),𝜷𝜷) =  ∑ 𝑫𝑫𝑬𝑬(𝒕𝒕)
(𝟏𝟏+𝒓𝒓)𝒕𝒕

 𝑵𝑵
𝒕𝒕=𝟏𝟏  

Guarantee placement, then, can be informed by the total profit difference. A positive (DE, 

total(G(t), β) (which can only occur when β  < 1) means that the ESCO provided an energy 
savings guarantee that ultimately was too low and the project over-performed relative to 
the guarantee. While this sounds appealing, it also means that the guarantee proposal by 
the ESCO was not as competitive as it might have been, meaning the ESCO could have 
lost out on the project. A negative (DE, total(G(t), β), meanwhile, means that the ESCO had 
a lower overall return on the project than originally expected. This could even be a net-
loss for the ESCO and, as such, a negative (DE, total(G(t), β) should be avoided whenever 
possible. An optimal outcome from the perspective of the ESCO, therefore, is a project 
where (DE, total(G(t), β) = 0. Considering that this is a project where we have set β =1, this 
effectively means that no under-performance can take place in any of the years of the 
project – a criterion highly relevant to third-party investors. 

In other words, the ESCO would attempt to place the guarantee at a level where its profit 
difference = 0 which is a value sufficiently below the mean of the distribution of expected 
savings. It also means that a broad distribution of a project’s expected savings results in 
a lower guarantee while a narrow distribution of expected savings elevates the guarantee 
placement.  

8.4. Guarantee Model as Built in KNIME Analytics Software: 
The previous sections describe the model introduced by Deng et al. [23] equation-by-
equation. We have made several (minor) adjustments, specifically the inclusion of 
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separate prices for electricity and natural gas. To aid replicability of the calculations and 
our research, we have constructed a KNIME data analytics model that takes the inputs 
and calculates each step based on the above directions. KNIME Analytics Platform is an 
open source software that enables the creation of specific and reusable workflow 
components.  

Data inputs: 
The model relies on receiving an Excel file which includes the pre- and post-retrofit 
energy consumption levels for natural gas and electricity use. This Excel file is generated 
through the modeling steps detailed in Section 0.  

Calculating the distribution of savings: 
Following Equation 1, realized energy bill savings are achieved by calculating the 
difference between energy bill costs before energy efficiency retrofit (Ctold) and after 
energy efficiency retrofit (Ctnew). To that end, we first need to determine, in energy units, 
what the difference between pre-and post-retrofit energy consumption is. To do so, we 
calculate the mean and variance of the normal distributions of Q for both the pre-and 
post-retrofit scenarios and for electricity and natural gas. Following the fact that the 
distribution of a difference of two normally distributed variates is given by a new normal 
distribution, 8 we derive the mean (𝜇𝜇𝑄𝑄𝐸𝐸0−𝑄𝑄𝐸𝐸(𝑡𝑡)) of the savings distribution with Equation 

8 and the variance (𝜎𝜎𝑄𝑄𝐸𝐸0− 𝑄𝑄𝐸𝐸(𝑡𝑡)
2 ) of the savings distribution with Equation 9.  

EQUATION 8:  𝝁𝝁𝑸𝑸𝑬𝑬𝟎𝟎−𝑸𝑸𝑬𝑬(𝒕𝒕) =  𝝁𝝁𝑸𝑸𝑬𝑬𝟎𝟎 −  𝝁𝝁𝑸𝑸𝑬𝑬(𝒕𝒕) 

Where 𝜇𝜇𝑄𝑄𝐸𝐸0 is the mean of the energy consumption level of the baseline (i.e. pre-retrofit) 

and 𝜇𝜇𝑄𝑄𝐸𝐸(𝑡𝑡) is the mean of the energy consumption level of the post-retrofit scenario.  

EQUATION 9:  𝝈𝝈𝑸𝑸𝑬𝑬𝟎𝟎− 𝑸𝑸𝑬𝑬(𝒕𝒕)
𝟐𝟐 =  𝝈𝝈𝑸𝑸𝑬𝑬𝟎𝟎

𝟐𝟐 + 𝝈𝝈𝑸𝑸𝑬𝑬(𝒕𝒕)
𝟐𝟐  

Where 𝜎𝜎𝑄𝑄𝐸𝐸0
2 is the variance of the baseline and 𝜎𝜎𝑄𝑄𝐸𝐸(𝑡𝑡)

2  is the energy consumption level of 

the post-retrofit scenario.  

                                                           
8 Weisstein, Eric W. "Normal Difference Distribution." From MathWorld--A Wolfram Web Resource. 
http://mathworld.wolfram.com/NormalDifferenceDistribution.html 

http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/NormalDifferenceDistribution.html
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This is represented in Sub-Model 1 for natural gas Sub-Model 2 for electricity. Sub-Model 
1 is graphically represented in Figure 12. The same approach is applied for electricity in 
Sub-Model 2 (not illustrated here).  

 

Figure 12 KNIME Sub-Model 1: Parameters of Natural Gas Savings 
Distribution 

Next. to create the expected savings distribution for each year of the project, we 
apply the  values provided in Table 17 to modify the distribution year-on-year. The 
result of Sub-Model 3 is a normally distributed natural gas savings profile for each 
year of the project Figure 13. The same is done for electricity in Sub-Model 4 (not 
illustrated here).  

 

Figure 13 KNIME Sub-Model 3: Calculate distribution of natural gas 
savings distribution using Sub-Model 1 inputs 

Calculating energy bill savings: 
Using Equation 4, we calculate energy bill savings in KNIME using Sub-Model 5 (Figure 
14) for natural gas. The model for electricity is not illustrated here. This model first 
introduces the drift, volatility, and energy price coefficients and then applies Equation 4 
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to calculate, for each entry, the energy bill savings based on the volatile energy price and 
the drift trajectory of the price over time.  

 

Figure 14 KNIME Sub-Model 5: Calculates natural gas energy bill 
savings  

Determining ESCO profit difference by year: 
After joining and summing the energy bill savings from electricity and natural gas, the 
model uses Equation 6 to calculate 𝐷𝐷𝐸𝐸(𝑡𝑡) for each year. Sub-Model 7 contains the steps 
necessary to operate Equation 6. The output of Sub-Model 7 is a comprehensive table 
where 𝐷𝐷𝐸𝐸(𝑡𝑡) is calculated for many possible guarantee levels (i.e. values of G(t)).  

 

Figure 15 KNIME Sub-Model 7: Calculates profit difference for each year 
of the project 

Determining guarantee placement: 
The final step, then, in the model is to calculate DE,total(G(t),β), the present value of the 
sum of 𝐷𝐷𝐸𝐸(𝑡𝑡) values calculated in Sub-Model 7.  The value where DE,total(G(t),β) = 0 can 
be interpolated from the many values of G(t) introduced in Sub-Model 7. The result is a 
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final Sub-Model 8 which documents the analytical steps necessary to determine the 
strategic guarantee level, relying predominantly on Equation 7.  

 

Figure 16 KNIME Sub-Model 8: Calculates present sum value of ESCO 
profit against series of possible guarantee levels 

The strategic guarantee level is, in short, the highest possible guarantee where the 
expression DE,total(G(t),β) = 0 remains true. 
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9.0. Appendix B: Energy Efficiency Performance Insurance 
Model 

This model also begins with a description of the cash flow from the perspective of the 
insurer at time t  ≥ 1: 

EQUATION 10:  𝑪𝑪𝑪𝑪𝒕𝒕,𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 =  𝑵𝑵− (𝑲𝑲− 𝑺𝑺𝒕𝒕)+ − 𝑻𝑻𝑻𝑻𝒕𝒕 

Where K describes the insured level of annual energy bill savings, St represents realized 
annual savings (see Equation 1), and TCt denotes the transaction costs that occur at time 
t. The level of transaction costs is dependent on the number of claims in time t and, as 
such, are stochastic. Actuarially fair premiums (N), can thus be calculated by the 
following equation which translates annual events to present value: 

EQUATION 11: 𝑵𝑵 =  
(𝟏𝟏+𝒓𝒓)𝑻𝑻∗𝒓𝒓
(𝟏𝟏+𝒓𝒓)𝑻𝑻−𝟏𝟏

∗  ∑ 𝑬𝑬 �(𝑲𝑲−𝑺𝑺𝒕𝒕)+
(𝟏𝟏+𝒓𝒓)𝒕𝒕

�𝑻𝑻
𝒕𝒕=𝟏𝟏  

Where r is the actuarial interest rate and T the lifetime of the insurance contract. An 
actuarially fair premium represents insurance with an expected net pay-off of zero. In 
other words, the premiums paid are equal to the expected value of the compensation 
received. This expected value, as indicated in Equation 11 is, in turn, defined as the 
probability of the insured-against event occurring multiplied by the compensation 
received in the event of a loss. The annual premium paid, therefore, is set equal to the 
probability of experiencing the risk event times the benefits paid out in the event of the 
risk event occurring. Figure 17 illustrates the application of Equation 11 in KNIME Data 
Analytics Software. 
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Figure 17 KNIME Sub-Model X: Calculates actuarially fair annual 
premium based on probability of energy bill savings against 
stated insured amount 

For example, consider K = G(t) at the $50,000 found in the previous hypothetical example 
(see Figure 2) and the use of actuarial fair interest rate of 1% and a 20-year insurance 
contract lifetime. In this case, we’re evaluating a project with a low risk of 
underperforming the guarantee. As such, the actuarially fair annual premium is $75,88. 
The premium is low because a) the probability of the risk event occurring is low (598 cash 
flows out of a simulated 10,000 or 5.98%) and b) the average present value of the risk 
event is low ($1,267 in this case).  
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